IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v4y2004i5p581-588.html
   My bibliography  Save this item

From local volatility to local Levy models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
  2. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.
  3. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
  4. F. Antonelli & A. Ramponi & S. Scarlatti, 2016. "Random Time Forward-Starting Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(08), pages 1-25, December.
  5. Dilip B. Madan & Martijn Pistorius & Wim Schoutens, 2013. "The valuation of structured products using Markov chain models," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 125-136, January.
  6. Madan, D. & Roynette, B. & Yor, Marc, 2008. "Option prices as probabilities," Finance Research Letters, Elsevier, vol. 5(2), pages 79-87, June.
  7. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
  8. S. Kindermann & P. Mayer, 2011. "On the calibration of local jump-diffusion asset price models," Finance and Stochastics, Springer, vol. 15(4), pages 685-724, December.
  9. Hainaut, Donatien & Leonenko, Nikolai, 2020. "Option pricing in illiquid markets: a fractional jump-diffusion approach," LIDAM Discussion Papers ISBA 2020003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  10. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
  11. Dilip Madan & Yue Xiao, 2010. "Leveraged Levy processes as models for stock prices," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 735-748.
  12. Nairn McWilliams & Sotirios Sabanis, 2011. "Arithmetic Asian Options under Stochastic Delay Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 423-446, February.
  13. Samuel N. Cohen & Lukasz Szpruch, 2011. "On Markovian solutions to Markov Chain BSDEs," Papers 1111.5739, arXiv.org.
  14. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Working Papers hal-00790001, HAL.
  15. Peter K. Friz & Stefan Gerhold & Marc Yor, 2013. "How to make Dupire's local volatility work with jumps," Papers 1302.5548, arXiv.org.
  16. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
  17. Leif Döring & Lukas Gonon & David J. Prömel & Oleg Reichmann, 2021. "Existence and Uniqueness Results for Time-Inhomogeneous Time-Change Equations and Fokker–Planck Equations," Journal of Theoretical Probability, Springer, vol. 34(1), pages 173-205, March.
  18. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
  19. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
  20. David Heath & Eckhard Platen, 2006. "Local volatility function models under a benchmark approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
  21. Amel Bentata & Rama Cont, 2015. "Forward equations for option prices in semimartingale models," Finance and Stochastics, Springer, vol. 19(3), pages 617-651, July.
  22. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
  23. Cousot, Laurent, 2007. "Conditions on option prices for absence of arbitrage and exact calibration," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3377-3397, November.
  24. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
  25. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Papers 1302.4854, arXiv.org, revised Apr 2013.
  26. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
  27. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
  28. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
  29. Peter Friz & Stefan Gerhold, 2011. "Don't stay local - extrapolation analytics for Dupire's local volatility," Papers 1105.1267, arXiv.org.
  30. Xu, Guoping & Zheng, Harry, 2010. "Basket options valuation for a local volatility jump-diffusion model with the asymptotic expansion method," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 415-422, December.
  31. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
  32. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.