My bibliography
Save this item
Toward robust early-warning models: a horse race, ensembles and model uncertainty
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nikolay Hristov & Markus Roth, 2019.
"Uncertainty Shocks and Financial Crisis Indicators,"
CESifo Working Paper Series
7839, CESifo.
- Hristov, Nikolay & Roth, Markus, 2019. "Uncertainty shocks and financial crisis indicators," Discussion Papers 36/2019, Deutsche Bundesbank.
- Colombo, Emilio & Pelagatti, Matteo, 2020.
"Statistical learning and exchange rate forecasting,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
- Emilio Colombo & Matteo Pelagatti, 2019. "Statistical Learning and Exchange Rate Forecasting," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis1901, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020.
"Deep Dynamic Factor Models,"
Papers
2007.11887, arXiv.org, revised May 2023.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2023. "Deep Dynamic Factor Models," Working Papers 2023-08, Center for Research in Economics and Statistics.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022.
"A machine learning approach to rank the determinants of banking crises over time and across countries,"
Journal of International Money and Finance, Elsevier, vol. 129(C).
- Elizabeth Jane Casabianca & Michele Catalano & Lorenzo Forni & Elena Giarda & Simone Passeri, 2019. "An Early Warning System for banking crises: From regression-based analysis to machine learning techniques," "Marco Fanno" Working Papers 0235, Dipartimento di Scienze Economiche "Marco Fanno".
- Ponomarenko, Alexey & Tatarintsev, Stas, 2023.
"Incorporating financial development indicators into early warning systems,"
The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
- Alexey Ponomarenko & Stas Tatarintsev, 2020. "Incorporating financial development indicators into early warning systems," Bank of Russia Working Paper Series wps58, Bank of Russia.
- Hyeongwoo Kim & Wen Shi, 2021.
"Forecasting financial vulnerability in the USA: A factor model approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 439-457, April.
- Hyeongwoo Kim & Wen Shi, 2016. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2016-15, Department of Economics, Auburn University.
- Hyeongwoo Kim & Wen Shi, 2020. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2020-04, Department of Economics, Auburn University.
- Hyeongwoo Kim & Wen Shi, 2018. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2018-07, Department of Economics, Auburn University.
- Kim, Hyeongwoo & Shi, Wen, 2018. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," MPRA Paper 89766, University Library of Munich, Germany.
- Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
- Huynh, Tran & Uebelmesser, Silke, 2024.
"Early warning models for systemic banking crises: Can political indicators improve prediction?,"
European Journal of Political Economy, Elsevier, vol. 81(C).
- Tran Huynh & Silke Uebelmesser, 2022. "Early warning models for systemic banking crises: can political indicators improve prediction?," Jena Economics Research Papers 2022-007, Friedrich-Schiller-University Jena.
- Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
- Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
- Dieckelmann, Daniel, 2020. "Cross-border lending and the international transmission of banking crises," Discussion Papers 2020/13, Free University Berlin, School of Business & Economics.
- Mr. Jorge A Chan-Lau, 2020. "UnFEAR: Unsupervised Feature Extraction Clustering with an Application to Crisis Regimes Classification," IMF Working Papers 2020/262, International Monetary Fund.
- Tölö, Eero, 2019. "Predicting systemic financial crises with recurrent neural networks," Research Discussion Papers 14/2019, Bank of Finland.
- Kwon, Yujin & Park, Sung Y., 2023. "Modeling an early warning system for household debt risk in Korea: A simple deep learning approach," Journal of Asian Economics, Elsevier, vol. 84(C).
- repec:zbw:bofrdp:2019_014 is not listed on IDEAS
- Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
- Marcin Pietrzak, 2021. "Can Financial Soundness Indicators Help Predict Financial Sector Distress?," IMF Working Papers 2021/197, International Monetary Fund.
- Moreno Badia, Marialuz & Medas, Paulo & Gupta, Pranav & Xiang, Yuan, 2022.
"Debt is not free,"
Journal of International Money and Finance, Elsevier, vol. 127(C).
- Ms. Marialuz Moreno Badia & Mr. Paulo A Medas & Pranav Gupta & Yuan Xiang, 2020. "Debt Is Not Free," IMF Working Papers 2020/001, International Monetary Fund.
- Truong, Chi & Sheen, Jeffrey & Trück, Stefan & Villafuerte, James, 2022. "Early warning systems using dynamic factor models: An application to Asian economies," Journal of Financial Stability, Elsevier, vol. 58(C).
- Stefano Zedda & Antonella Spinace-Casale, 2021. "Modeling and Simulating Cross Country Banking Contagion Risks," JRFM, MDPI, vol. 14(8), pages 1-16, July.
- Maria Ludovica Drudi & Stefano Nobili, 2021. "A liquidity risk early warning indicator for Italian banks: a machine learning approach," Temi di discussione (Economic working papers) 1337, Bank of Italy, Economic Research and International Relations Area.
- Barbara Jarmulska, 2022.
"Random forest versus logit models: Which offers better early warning of fiscal stress?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 455-490, April.
- Jarmulska, Barbara, 2020. "Random forest versus logit models: which offers better early warning of fiscal stress?," Working Paper Series 2408, European Central Bank.
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Solomon Y. Deku & Alper Kara & Artur Semeyutin, 2021. "The predictive strength of MBS yield spreads during asset bubbles," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 111-142, January.
- Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2018.
"An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?,"
Discussion Papers
48/2018, Deutsche Bundesbank.
- Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?," IWH Discussion Papers 2/2019, Halle Institute for Economic Research (IWH).
- Michael Puglia & Adam Tucker, 2020. "Machine Learning, the Treasury Yield Curve and Recession Forecasting," Finance and Economics Discussion Series 2020-038, Board of Governors of the Federal Reserve System (U.S.).
- Mario Maggi & Maria-Laura Torrente & Pierpaolo Uberti, 2020. "Proper measures of connectedness," Annals of Finance, Springer, vol. 16(4), pages 547-571, December.
- Hristov, Nikolay & Roth, Markus, 2022. "Uncertainty shocks and systemic-risk indicators," Journal of International Money and Finance, Elsevier, vol. 122(C).
- Kurowski, Łukasz & Smaga, Paweł, 2023. "Analysing financial stability reports as crisis predictors with the use of text-mining," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
- J Rhet Montana & Luis A. Souto Arias & Pasquale Cirillo & Cornelis W. Oosterlee, 2024. "Quantum Majorization in Market Crash Prediction," Risks, MDPI, vol. 12(12), pages 1-18, December.
- Alexander Musaev & Andrey Makshanov & Dmitry Grigoriev, 2022. "Statistical Analysis of Current Financial Instrument Quotes in the Conditions of Market Chaos," Mathematics, MDPI, vol. 10(4), pages 1-16, February.
- Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "On the efficient synthesis of short financial time series: A Dynamic Factor Model approach," Finance Research Letters, Elsevier, vol. 53(C).
- Xianglong Liu, 2023. "Towards Better Banking Crisis Prediction: Could an Automatic Variable Selection Process Improve the Performance?," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 288-312, June.
- Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
- Magnus Saß, 2024. "Detecting excessive credit growth: An approach based on structural counterfactuals," Berlin School of Economics Discussion Papers 0046, Berlin School of Economics.
- Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "Measuring financial soundness around the world: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Beltran, Daniel O. & Dalal, Vihar M. & Jahan-Parvar, Mohammad R. & Paine, Fiona A., 2024. "Optimizing composite early warning indicators," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
- Lutfa Tilat Ferdous & Khnd Md Mostafa Kamal & Amirul Ahsan & Nhung Hong Thuy Hoang & Munshi Samaduzzaman, 2022. "An Early Warning System for Currency Crises in Emerging Countries," JRFM, MDPI, vol. 15(4), pages 1-25, April.
- Mr. Plamen K Iossifov, 2021. "Cyclical Patterns of Systemic Risk Metrics: Cross-Country Analysis," IMF Working Papers 2021/028, International Monetary Fund.