IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v10y2010i3p295-304.html
   My bibliography  Save this item

Hierarchies of Archimedean copulas

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
  2. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
  3. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
  4. Olusola O. Ayantobo & Yi Li & Songbai Song, 2019. "Multivariate Drought Frequency Analysis using Four-Variate Symmetric and Asymmetric Archimedean Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 103-127, January.
  5. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
  6. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  7. Göran Kauermann & Renate Meyer, 2014. "Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas," Computational Statistics, Springer, vol. 29(1), pages 283-306, February.
  8. GRIGORIADIS, Vasilis & EMMANOUILIDES, Christos & FOUSEKIS, Panos, 2016. "The Integration Of Pigmeat Markets In The Eu. Evidence From A Regular Mixed Vine Copula," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 19(01), pages 1-10, March.
  9. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
  10. Andreas Masuhr, 2017. "Volatility Transmission in Overlapping Trading Zones," CQE Working Papers 6717, Center for Quantitative Economics (CQE), University of Muenster.
  11. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
  12. Shahid Latif & Slobodan P. Simonovic, 2023. "Trivariate Probabilistic Assessments of the Compound Flooding Events Using the 3-D Fully Nested Archimedean (FNA) Copula in the Semiparametric Distribution Setting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1641-1693, March.
  13. Lee, Sangwook & Kim, Min Jae & Kim, Soo Yong, 2011. "Interest rates factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2531-2548.
  14. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
  15. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
  16. Bernardi Enrico & Romagnoli Silvia, 2015. "A copula-based hierarchical hybrid loss distribution," Statistics & Risk Modeling, De Gruyter, vol. 32(1), pages 73-87, April.
  17. Grothe, Oliver & Hofert, Marius, 2015. "Construction and sampling of Archimedean and nested Archimedean Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 182-198.
  18. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
  19. Han, Yingwei & Li, Jie, 2022. "Should investors include green bonds in their portfolios? Evidence for the USA and Europe," International Review of Financial Analysis, Elsevier, vol. 80(C).
  20. Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
  21. Awondo, Sebastain N., 2019. "Efficiency of region-wide catastrophic weather risk pools: Implications for African Risk Capacity insurance program," Journal of Development Economics, Elsevier, vol. 136(C), pages 111-118.
  22. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
  23. Xiangqian Sun & Xing Yan & Qi Wu, 2020. "Generative Learning of Heterogeneous Tail Dependence," Papers 2011.13132, arXiv.org, revised Nov 2023.
  24. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
  25. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
  26. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
  27. Calabrese, Raffaella & Degl’Innocenti, Marta & Osmetti, Silvia Angela, 2017. "The effectiveness of TARP-CPP on the US banking industry: A new copula-based approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 1029-1037.
  28. Awondo, Sebastain N. & Shurley, Don W., 2017. "On the Efficiency of Pseudo Risk Pools and Proxy Yield Data on Crop Insurance and Reinsurance in U.S," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258566, Agricultural and Applied Economics Association.
  29. repec:hum:wpaper:sfb649dp2012-036 is not listed on IDEAS
  30. Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
  31. Chen, Zhenlong & Chang, Jing & Hao, Xiaozhen, 2024. "Portfolio selection via high-dimensional stochastic factor Copula," Finance Research Letters, Elsevier, vol. 67(PA).
  32. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions. II," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 23(3), pages 98-132.
  33. Andreas Masuhr, 2018. "Bayesian Estimation of Generalized Partition of Unity Copulas," CQE Working Papers 7318, Center for Quantitative Economics (CQE), University of Muenster.
  34. Härdle Wolfgang Karl & Okhrin Ostap & Okhrin Yarema, 2013. "Dynamic structured copula models," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 361-388, December.
  35. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
  36. Manner, Hans & Türk, Dennis & Eichler, Michael, 2016. "Modeling and forecasting multivariate electricity price spikes," Energy Economics, Elsevier, vol. 60(C), pages 255-265.
  37. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
  38. Enrico Bernardi & Silvia Romagnoli, 2016. "Distorted Copula-Based Probability Distribution of a Counting Hierarchical Variable: A Credit Risk Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 285-310, March.
  39. Franziska Gaupp & Georg Pflug & Stefan Hochrainer‐Stigler & Jim Hall & Simon Dadson, 2017. "Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the Assessment of Global and Regional Risk Pools," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2212-2228, November.
  40. Diers, Dorothea & Eling, Martin & Marek, Sebastian D., 2012. "Dependence modeling in non-life insurance using the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 430-436.
  41. Bernardi, Enrico & Falangi, Federico & Romagnoli, Silvia, 2015. "A hierarchical copula-based world-wide valuation of sovereign risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 155-169.
  42. Okhrin, Ostap & Xu, Ya Fei, 2017. "A comparison study of pricing credit default swap index tranches with convex combination of copulae," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 193-217.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.