IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v98y2014i3d10.1007_s11192-013-1073-x.html
   My bibliography  Save this item

Sources of inspiration? Making sense of scientific references in patents

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
  2. Masashi Shirabe, 2014. "Identifying SCI covered publications within non-patent references in U.S. utility patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 999-1014, November.
  3. Moaniba, Igam M. & Lee, Pei-Chun & Su, Hsin-Ning, 2020. "How does external knowledge sourcing enhance product development? Evidence from drug commercialization," Technology in Society, Elsevier, vol. 63(C).
  4. Krzysztof Klincewicz & Szymon Szumiał, 2022. "Successful patenting—not only how, but with whom: the importance of patent attorneys," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5111-5137, September.
  5. Ding, Cherng G. & Hung, Wen-Chi & Lee, Meng-Che & Wang, Hung-Jui, 2017. "Exploring paper characteristics that facilitate the knowledge flow from science to technology," Journal of Informetrics, Elsevier, vol. 11(1), pages 244-256.
  6. Gabriele Angori & Chiara Marzocchi & Laura Ramaciotti & Ugo Rizzo, 2024. "A patent-based analysis of the evolution of basic, mission-oriented, and applied research in European universities," The Journal of Technology Transfer, Springer, vol. 49(2), pages 609-641, April.
  7. Ashish Arora & Sharon Belenzon & Honggi Lee, 2018. "Reversed citations and the localization of knowledge spillovers," Journal of Economic Geography, Oxford University Press, vol. 18(3), pages 495-521.
  8. Leonardo Costa Ribeiro & Glenda Kruss & Gustavo Britto & Américo Tristão Bernardes & Eduardo Motta e Albuquerque, 2014. "A methodology for unveiling global innovation networks: patent citations as clues to cross border knowledge flows," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 61-83, October.
  9. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
  10. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
  11. Joaquín M. Azagra-Caro & Elena M. Tur, 2018. "Examiner trust in applicants to the European Patent Office: country specificities," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1319-1348, December.
  12. Anthony F. J. Raan & Jos J. Winnink, 2018. "Do younger Sleeping Beauties prefer a technological prince?," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 701-717, February.
  13. Chul Lee & Gunno Park & Klaus Marhold & Jina Kang, 2017. "Top management team’s innovation-related characteristics and the firm’s explorative R&D: an analysis based on patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 639-663, May.
  14. Azagra-Caro,Joaquín M. & Tur,Elena M., 2014. "Examiner amendments to applications to the european patent office: Procedures, knowledge bases and country specificities," INGENIO (CSIC-UPV) Working Paper Series 201406, INGENIO (CSIC-UPV), revised 29 Nov 2018.
  15. Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
  16. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
  17. Basse Mama, Houdou, 2018. "Nonlinear capital market payoffs to science-led innovation," Research Policy, Elsevier, vol. 47(6), pages 1084-1095.
  18. Naomi Fukuzawa & Takanori Ida, 2016. "Science linkages between scientific articles and patents for leading scientists in the life and medical sciences field: the case of Japan," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 629-644, February.
  19. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
  20. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
  21. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
  22. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
  23. Tan Tran, 2020. "R&D and Knowledge Expertise of French Regions," Papers in Evolutionary Economic Geography (PEEG) 2004, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Feb 2020.
  24. Cammarano, Antonello & Michelino, Francesca & Lamberti, Emilia & Caputo, Mauro, 2017. "Accumulated stock of knowledge and current search practices: The impact on patent quality," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 204-222.
  25. Ziyou Teng & Xuezhong Zhu, 2024. "Measuring the global and domestic technological impact of Chinese scientific output: a patent-to-paper citation analysis of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5181-5210, September.
  26. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.