IDEAS home Printed from https://ideas.repec.org/r/spr/portec/v21y2022i3d10.1007_s10258-022-00222-1.html
   My bibliography  Save this item

The dynamics of growth and distribution in a spatially heterogeneous world

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carmen Camacho & Agustín Pérez-Barahona, 2012. "Land use dynamics and the environment," Post-Print halshs-00674020, HAL.
  2. Herb Kunze & Davide La Torre & Simone Marsiglio, 2019. "A Multicriteria Macroeconomic Model with Intertemporal Equity and Spatial Spillovers," Papers 1911.08247, arXiv.org.
  3. Boucekkine, R. & Fabbri, G. & Federico, S. & Gozzi, F., 2020. "Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function," Working Papers 2020-02, Grenoble Applied Economics Laboratory (GAEL).
  4. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," AMSE Working Papers 1902, Aix-Marseille School of Economics, France.
  5. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
  6. Herb Kunze & Davide Torre, 2022. "Solving inverse problems for steady-state equations using a multiple criteria model with collage distance, entropy, and sparsity," Annals of Operations Research, Springer, vol. 311(2), pages 1051-1065, April.
  7. Raouf Boucekkine & Carmen Camacho & Fabbri Giorgio, 2013. "On the optimal control of some parabolic partial differential equations arising in economics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00973388, HAL.
  8. Giorgio Fabbri, 2014. "Ecological Barriers and Convergence: A Note on Geometry in Spatial Growth Models," Documents de recherche 14-05, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
  9. Boucekkine, R. & Camacho, C. & Fabbri, G., 2013. "Spatial dynamics and convergence: The spatial AK model," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2719-2736.
  10. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "A dynamic theory of spatial externalities," Games and Economic Behavior, Elsevier, vol. 132(C), pages 133-165.
  11. Giorgio Fabbri, 2014. "Ecological Barriers and Convergence: A Note on Geometry in Spatial Growth Models," Documents de recherche 14-05, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
  12. Torre, Davide La & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Transboundary pollution externalities: Think globally, act locally?," Journal of Mathematical Economics, Elsevier, vol. 96(C).
  13. Spyridon Tsangaris & Anastasios Xepapadeas & Athanasios Yannacopoulos, 2022. "Spatial externalities, R&D spillovers, and endogenous technological change," DEOS Working Papers 2225, Athens University of Economics and Business.
  14. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "A spatiotemporal framework for the analytical study of optimal growth under transboundary pollution," AMSE Working Papers 1926, Aix-Marseille School of Economics, France.
  15. Juchem Neto, J.P. & Claeyssen, J.C.R. & Pôrto Júnior, S.S., 2018. "Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 76-86.
  16. Boucekkine, Raouf & Camacho, Carmen & Zou, Benteng, 2009. "Bridging The Gap Between Growth Theory And The New Economic Geography: The Spatial Ramsey Model," Macroeconomic Dynamics, Cambridge University Press, vol. 13(1), pages 20-45, February.
  17. Juchem Neto, Joao Plinio & Claeyssen, Julio Cesar Ruiz & Porto Junior, Sabino da Silva, 2014. "A spatial Solow model with transport cost," MPRA Paper 59766, University Library of Munich, Germany.
  18. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "Growth and agglomeration in the heterogeneous space: a generalized AK approach," Journal of Economic Geography, Oxford University Press, vol. 19(6), pages 1287-1318.
  19. repec:esx:essedp:729 is not listed on IDEAS
  20. Camacho, Carmen & Zou, Benteng & Briani, Maya, 2008. "On the dynamics of capital accumulation across space," European Journal of Operational Research, Elsevier, vol. 186(2), pages 451-465, April.
  21. Boucekkine, R. & Fabbri, G. & Federico, S. & Gozzi, F., 2020. "Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function," Working Papers 2020-02, Grenoble Applied Economics Laboratory (GAEL).
  22. Brito, Paulo, 2011. "Global endogenous growth and distributional dynamics," MPRA Paper 41653, University Library of Munich, Germany.
  23. Xepapadeas, A. & Yannacopoulos, A.N., 2016. "Spatial growth with exogenous saving rates," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 125-137.
  24. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution," Journal of Mathematical Economics, Elsevier, vol. 98(C).
  25. Herb Kunze & Davide Torre & Simone Marsiglio, 2022. "Sustainability and spatial spillovers in a multicriteria macroeconomic model," Annals of Operations Research, Springer, vol. 311(2), pages 1067-1084, April.
  26. Breinlich, Holger & Ottaviano, Gianmarco I.P. & Temple, Jonathan R.W., 2014. "Regional Growth and Regional Decline," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 4, pages 683-779, Elsevier.
  27. Calvia, Alessandro & Gozzi, Fausto & Leocata, Marta & Papayiannis, Georgios I. & Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2024. "An optimal control problem with state constraints in a spatio-temporal economic growth model on networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
  28. Rintaro Yamaguchi, 2021. "Genuine Savings and Sustainability with Resource Diffusion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 451-471, October.
  29. Brock, William & Xepapadeas, Anastasios, 2008. "Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2745-2787, September.
  30. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2015. "Pollution diffusion and abatement activities across space and over time," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 48-63.
  31. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).
  32. Gani Aldashev & Serik Aldashev & Timoteo Carletti, 2014. "On Convergence in the Spatial AK Growth Models," Papers 1401.4887, arXiv.org.
  33. Albeverio, Sergio & Mastrogiacomo, Elisa, 2022. "Large deviation principle for spatial economic growth model on networks," Journal of Mathematical Economics, Elsevier, vol. 103(C).
  34. Carmen Camacho & Agustín Pérez-Barahona, 2017. "The diffusion of economic activity across space: a new approach," PSE Working Papers halshs-01670532, HAL.
  35. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
  36. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
  37. Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2023. "Spatial growth theory: Optimality and spatial heterogeneity," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
  38. W. Brock & A. Xepapadeas & A. Yannacopoulos, 2014. "Robust Control and Hot Spots in Spatiotemporal Economic Systems," Dynamic Games and Applications, Springer, vol. 4(3), pages 257-289, September.
  39. Fabbri, Giorgio, 2016. "Geographical structure and convergence: A note on geometry in spatial growth models," Journal of Economic Theory, Elsevier, vol. 162(C), pages 114-136.
  40. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "Optimal location of economic activity and population density: The role of the social welfare function," Working Papers halshs-02472772, HAL.
  41. Klaus Desmet & Esteban Rossi‐Hansberg, 2010. "On Spatial Dynamics," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 43-63, February.
  42. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
  43. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "A dynamic theory of spatial externalities," Working Papers halshs-02613177, HAL.
  44. Rubén Caballero & Alexandre N. Carvalho & Pedro Marín-Rubio & José Valero, 2021. "About the Structure of Attractors for a Nonlocal Chafee-Infante Problem," Mathematics, MDPI, vol. 9(4), pages 1-36, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.