IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/813.html
   My bibliography  Save this paper

A Spatiotemporal Framework for the Analytical Study of Optimal Growth Under Transboundary Pollution

Author

Listed:
  • Raouf Boucekkine
  • Giorgio Fabbri
  • Salvatore Federico
  • Fausto Gozzi

Abstract

We construct a spatiotemporal frame for the study of optimal growth under transboundary pollution. Space is continuous and polluting emissions originate in the intensity of use of the production input. Pollution ows across locations following a diffusion process. The objective functional of the economy is to set the optimal production policy over time and space to maximize welfare from consumption, taking into account a negative local pollution externality and the diffusive nature of pollution. Our framework allows for space and time dependent preferences and productivity, and does not restrict diffusion speed to be spaceindependent. This provides a comprehensive setting to analyze pollution diffusion with a close account of geographic heterogeneity. The involved optimization problem is infinite-dimensional. We propose an alternative method for an analytical characterization of the optimal paths and the asymptotic spatial distributions. The method builds on a deep economic concept of pollution spatiotemporal welfare effect, which makes it denitely useful for economic analysis

Suggested Citation

  • Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "A Spatiotemporal Framework for the Analytical Study of Optimal Growth Under Transboundary Pollution," Department of Economics University of Siena 813, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:813
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/813.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2018. "Geographic Environmental Kuznets Curves: The Optimal Growth Linear-Quadratic Case," Working Papers halshs-01792440, HAL.
    2. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed optimal control models in environmental economics: a review," Post-Print hal-02194184, HAL.
    3. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    4. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "Growth and agglomeration in the heterogeneous space: a generalized AK approach," Journal of Economic Geography, Oxford University Press, vol. 19(6), pages 1287-1318.
    5. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed optimal control models in environment economics," Post-Print hal-02145182, HAL.
    6. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," Working Papers halshs-01982243, HAL.
    7. Emilio Barucci & Fausto Gozzi, 2001. "Technology adoption and accumulation in a vintage-capital model," Journal of Economics, Springer, vol. 74(1), pages 1-38, February.
    8. Ballestra, Luca Vincenzo, 2016. "The spatial AK model and the Pontryagin maximum principle," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 87-94.
    9. Dockner Engelbert J. & Van Long Ngo, 1993. "International Pollution Control: Cooperative versus Noncooperative Strategies," Journal of Environmental Economics and Management, Elsevier, vol. 25(1), pages 13-29, July.
    10. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    11. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    12. Raouf Boucekkine & Jacek Krawczyk & Thomas Vallée, 2011. "Environmental quality versus economic performance: A dynamic game approach," Post-Print hal-03193660, HAL.
    13. Fabbri, Giorgio, 2016. "Geographical structure and convergence: A note on geometry in spatial growth models," Journal of Economic Theory, Elsevier, vol. 162(C), pages 114-136.
    14. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    15. Barucci, Emilio & Gozzi, Fausto, 1998. "Investment in a vintage capital model," Research in Economics, Elsevier, vol. 52(2), pages 159-188, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    2. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    2. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "A dynamic theory of spatial externalities," Games and Economic Behavior, Elsevier, vol. 132(C), pages 133-165.
    3. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," AMSE Working Papers 1902, Aix-Marseille School of Economics, France.
    4. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    5. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "A dynamic theory of spatial externalities," Working Papers halshs-02613177, HAL.
    6. Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2023. "Spatial growth theory: Optimality and spatial heterogeneity," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    7. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    8. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    9. Torre, Davide La & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Transboundary pollution externalities: Think globally, act locally?," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    10. Spyridon Tsangaris & Anastasios Xepapadeas & Athanasios Yannacopoulos, 2022. "Spatial externalities, R&D spillovers, and endogenous technological change," DEOS Working Papers 2225, Athens University of Economics and Business.
    11. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2018. "Geographic Environmental Kuznets Curves: The Optimal Growth Linear-Quadratic Case," AMSE Working Papers 1813, Aix-Marseille School of Economics, France.
    12. Faggian, Silvia & Gozzi, Fausto & Kort, Peter M., 2021. "Optimal investment with vintage capital: Equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    13. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).
    14. Fabbri, Giorgio & Gozzi, Fausto & Zanco, Giovanni, 2021. "Verification results for age-structured models of economic–epidemics dynamics," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    15. Boucekkine, R. & Fabbri, G. & Federico, S. & Gozzi, F., 2020. "Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function," Working Papers 2020-02, Grenoble Applied Economics Laboratory (GAEL).
    16. Boucekkine, Raouf & Ruan, Weihua & Zou, Benteng, 2023. "The irreversible pollution game," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    17. Calvia, Alessandro & Gozzi, Fausto & Leocata, Marta & Papayiannis, Georgios I. & Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2024. "An optimal control problem with state constraints in a spatio-temporal economic growth model on networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    18. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "Optimal location of economic activity and population density: The role of the social welfare function," AMSE Working Papers 2003, Aix-Marseille School of Economics, France.
    19. Boucekkine, R. & Fabbri, G. & Federico, S. & Gozzi, F., 2020. "Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function," Working Papers 2020-02, Grenoble Applied Economics Laboratory (GAEL).
    20. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.

    More about this item

    Keywords

    Optimal growth; spatiotemporal modelling; transboundary pollution; infinite dimensional optimal control;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.