IDEAS home Printed from https://ideas.repec.org/r/spr/jclass/v1y1984i1p7-24.html
   My bibliography  Save this item

Efficient algorithms for agglomerative hierarchical clustering methods

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuching Lu & Koki Tozuka & Goutam Chakraborty & Masafumi Matsuhara, 2021. "A Novel Item Cluster-Based Collaborative Filtering Recommendation System," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 327-346, November.
  2. Cho, Catherine & Kim, Sooyoung & Lee, Jaewook & Lee, Dae-Won, 2006. "A tandem clustering process for multimodal datasets," European Journal of Operational Research, Elsevier, vol. 168(3), pages 998-1008, February.
  3. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
  4. Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
  5. Lerato Lerato & Thomas Niesler, 2015. "Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
  6. Zhang, Xiaolei & Ren, Yibin & Huang, Baoxiang & Han, Yong, 2018. "Analysis of time-varying characteristics of bus weighted complex network in Qingdao based on boarding passenger volume," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 376-394.
  7. Alberto Fernández & Sergio Gómez, 2020. "Versatile Linkage: a Family of Space-Conserving Strategies for Agglomerative Hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 584-597, October.
  8. Potoniec, Jedrzej & Sroka, Daniel & Pawlak, Tomasz P., 2022. "Continuous discovery of Causal nets for non-stationary business processes using the Online Miner," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1304-1320.
  9. C. Finden & A. Gordon, 1985. "Obtaining common pruned trees," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 255-276, December.
  10. Mirko Křivánek, 1986. "Computing the nearest neighbor interchange metric for unlabeled binary trees is NP-complete," Journal of Classification, Springer;The Classification Society, vol. 3(1), pages 55-60, March.
  11. Tien-Chin Wang & Binh Ngoc Phan & Thuy Thi Thu Nguyen, 2021. "Evaluating Operation Performance in Higher Education: The Case of Vietnam Public Universities," Sustainability, MDPI, vol. 13(7), pages 1-21, April.
  12. James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
  13. Chen, James Ming & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning," Resources Policy, Elsevier, vol. 73(C).
  14. Bajoulvand, Atena & Zargari Marandi, Ramtin & Daliri, Mohammad Reza & Sabzpoushan, Seyed Hojjat, 2017. "Analysis of folk music preference of people from different ethnic groups using kernel-based methods on EEG signals," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 62-70.
  15. Nicholas J Ose & Brandon M Butler & Avishek Kumar & I Can Kazan & Maxwell Sanderford & Sudhir Kumar & S Banu Ozkan, 2022. "Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants," PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-22, April.
  16. Costas Panagiotakis, 2015. "Point Clustering via Voting Maximization," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 212-240, July.
  17. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
  18. William Day & Herbert Edelsbrunner, 1985. "Investigation of proportional link linkage clustering methods," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 239-254, December.
  19. Kittel, Martin & Hobbie, Hannes & Dierstein, Constantin, 2022. "Temporal aggregation of time series to identify typical hourly electricity system states: A systematic assessment of relevant cluster algorithms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 247, pages 1-15.
  20. Baschieri, Giulia & Carosi, Andrea & Mengoli, Stefano, 2015. "Local IPOs, local delistings, and the firm location premium," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 67-83.
  21. Sandra Mayr & Fabian Hauser & Sujitha Puthukodan & Markus Axmann & Janett Göhring & Jaroslaw Jacak, 2020. "Statistical analysis of 3D localisation microscopy images for quantification of membrane protein distributions in a platelet clot model," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-34, June.
  22. Cheng-Chun Lee & Mikel Maron & Ali Mostafavi, 2022. "Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
  23. Monika Khandelwal & Sabha Sheikh & Ranjeet Kumar Rout & Saiyed Umer & Saurav Mallik & Zhongming Zhao, 2022. "Unsupervised Learning for Feature Representation Using Spatial Distribution of Amino Acids in Aldehyde Dehydrogenase (ALDH2) Protein Sequences," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
  24. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
  25. Dongyun Nie & Michael Scriney & Xiaoning Liang & Mark Roantree, 2024. "From data acquisition to validation: a complete workflow for predicting individual customer lifetime value," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 321-341, June.
  26. Quan Gan & Wang Chun Wei & David Johnstone, 2015. "A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1805-1821, November.
  27. Qiufang Shi & Xiaoyong Yan & Bin Jia & Ziyou Gao, 2020. "Freight Data-Driven Research on Evaluation Indexes for Urban Agglomeration Development Degree," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
  28. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.