IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v204y2013i1p145-16910.1007-s10479-012-1266-3.html
   My bibliography  Save this item

Robust portfolio asset allocation and risk measures

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yam, Sheung Chi Phillip & Yang, Hailiang & Yuen, Fei Lung, 2016. "Optimal asset allocation: Risk and information uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 554-561.
  2. Maria Cristina Arcuri & Gino Gandolfi & Fabrizio Laurini, 2023. "Robust portfolio optimization for banking foundations: a CVaR approach for asset allocation with mandatory constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 557-581, June.
  3. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
  4. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
  5. Hongxin Zhao & Yilun Jiang & Yizhou Yang, 2023. "Robust and Sparse Portfolio: Optimization Models and Algorithms," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
  6. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
  7. Gian Paolo Clemente & Rosanna Grassi & Asmerilda Hitaj, 2022. "Smart network based portfolios," Annals of Operations Research, Springer, vol. 316(2), pages 1519-1541, September.
  8. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
  9. Sally G. Arcidiacono & Damiano Rossello, 2022. "A hybrid approach to the discrepancy in financial performance’s robustness," Operational Research, Springer, vol. 22(5), pages 5441-5476, November.
  10. Giuseppe Pandolfo & Carmela Iorio & Roberta Siciliano & Antonio D’Ambrosio, 2020. "Robust mean-variance portfolio through the weighted $$L^{p}$$ L p depth function," Annals of Operations Research, Springer, vol. 292(1), pages 519-531, September.
  11. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
  12. Saeed Marzban & Masoud Mahootchi & Alireza Arshadi Khamseh, 2015. "Developing a multi-period robust optimization model considering American style options," Annals of Operations Research, Springer, vol. 233(1), pages 305-320, October.
  13. Azzurra Morreale & Jan Stoklasa & Mikael Collan & Giovanna Lo Nigro, 2018. "Uncertain outcome presentations bias decisions: experimental evidence from Finland and Italy," Annals of Operations Research, Springer, vol. 268(1), pages 259-272, September.
  14. Zhifeng Dai & Jie Kang, 2022. "Some new efficient mean–variance portfolio selection models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4784-4796, October.
  15. Xidonas, Panos & Hassapis, Christis & Soulis, John & Samitas, Aristeidis, 2017. "Robust minimum variance portfolio optimization modelling under scenario uncertainty," Economic Modelling, Elsevier, vol. 64(C), pages 60-71.
  16. László PáL, 2022. "Asset Allocation Strategies Using Covariance Matrix Estimators," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 10(1), pages 133-144, September.
  17. Luigi Grossi & Fabrizio Laurini, 2020. "Robust asset allocation with conditional value at risk using the forward search," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 335-352, May.
  18. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
  19. Anja Vinzelberg & Benjamin R. Auer, 2022. "Unprofitability of food market investments," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 2887-2910, October.
  20. Xiao, Helu & Ren, Tiantian & Zhou, Zhongbao & Liu, Wenbin, 2021. "Parameter uncertainty in estimation of portfolio efficiency: Evidence from an interval diversification-consistent DEA approach," Omega, Elsevier, vol. 103(C).
  21. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
  22. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
  23. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2016. "Good deals and benchmarks in robust portfolio selection," European Journal of Operational Research, Elsevier, vol. 250(2), pages 666-678.
  24. Xidonas, Panos & Mavrotas, George & Hassapis, Christis & Zopounidis, Constantin, 2017. "Robust multiobjective portfolio optimization: A minimax regret approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 299-305.
  25. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
  26. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.