IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v111y2002i1p197-22510.1023-a1020957904442.html
   My bibliography  Save this item

Locating Multiple Competitive Facilities: Spatial Interaction Models with Variable Expenditures

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Granot, Daniel & Granot, Frieda & Raviv, Tal, 2010. "On competitive sequential location in a network with a decreasing demand intensity," European Journal of Operational Research, Elsevier, vol. 205(2), pages 301-312, September.
  2. Merino, María & Ramirez-Nafarrate, Adrian, 2016. "Estimation of retail sales under competitive location in Mexico," Journal of Business Research, Elsevier, vol. 69(2), pages 445-451.
  3. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
  4. Blas Pelegrín & Pascual Fernández & María Dolores García Pérez, 2016. "Profit maximization and reduction of the cannibalization effect in chain expansion," Annals of Operations Research, Springer, vol. 246(1), pages 57-75, November.
  5. Junjie Wu & Jian Chen & Yili Ren, 2011. "GIS enabled service site selection: Environmental analysis and beyond," Information Systems Frontiers, Springer, vol. 13(3), pages 337-348, July.
  6. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
  7. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
  8. D. Santos-Peñate & R. Suárez-Vega & P. Dorta-González, 2007. "The Leader–Follower Location Model," Networks and Spatial Economics, Springer, vol. 7(1), pages 45-61, March.
  9. Rafael Suárez‐Vega & Dolores R. Santos‐Peñate & Pablo Dorta‐González, 2004. "Competitive Multifacility Location on Networks: the (r∣Xp)‐Medianoid Problem," Journal of Regional Science, Wiley Blackwell, vol. 44(3), pages 569-588, August.
  10. Rezapour, Shabnam & Farahani, Reza Zanjirani & Dullaert, Wout & De Borger, Bruno, 2014. "Designing a new supply chain for competition against an existing supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 124-140.
  11. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2011. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 420-440, May.
  12. Firoozeh Kaveh & Reza Tavakkoli-Moghaddam & Chefi Triki & Yaser Rahimi & Amin Jamili, 2021. "A new bi-objective model of the urban public transportation hub network design under uncertainty," Annals of Operations Research, Springer, vol. 296(1), pages 131-162, January.
  13. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
  14. Pelegrín, Blas & Fernández, Pascual & Dolores García Pérez, María & Cano Hernández, Saúl, 2012. "On the location of new facilities for chain expansion under delivered pricing," Omega, Elsevier, vol. 40(2), pages 149-158, April.
  15. Aras, Necati & Aksen, Deniz, 2008. "Locating collection centers for distance- and incentive-dependent returns," International Journal of Production Economics, Elsevier, vol. 111(2), pages 316-333, February.
  16. Dong-Guen Kim & Yeong-Dae Kim, 2013. "A Lagrangian heuristic algorithm for a public healthcare facility location problem," Annals of Operations Research, Springer, vol. 206(1), pages 221-240, July.
  17. Christian Burkart & Pamela C. Nolz & Walter J. Gutjahr, 2017. "Modelling beneficiaries’ choice in disaster relief logistics," Annals of Operations Research, Springer, vol. 256(1), pages 41-61, September.
  18. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
  19. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
  20. Rafael Suárez-Vega & Dolores Santos-Peñate & Pablo Dorta-González, 2014. "Location and quality selection for new facilities on a network market," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(2), pages 537-560, March.
  21. Redondo, Juana L. & Fernández, José & Arrondo, Aránzazu G. & García, Inmaculada & Ortigosa, Pilar M., 2012. "Fixed or variable demand? Does it matter when locating a facility?," Omega, Elsevier, vol. 40(1), pages 9-20, January.
  22. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2013. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 284-304, July.
  23. R Aboolian & O Berman & D Krass, 2008. "Optimizing pricing and location decisions for competitive service facilities charging uniform price," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1506-1519, November.
  24. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
  25. H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
  26. J. Redondo & A. Arrondo & J. Fernández & I. García & P. Ortigosa, 2013. "A two-level evolutionary algorithm for solving the facility location and design (1|1)-centroid problem on the plane with variable demand," Journal of Global Optimization, Springer, vol. 56(3), pages 983-1005, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.