IDEAS home Printed from https://ideas.repec.org/r/rsc/rsceui/2010-82.html
   My bibliography  Save this item

A Novel Business Model for Aggregating the Values of Electricity Storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yao, Xing & Zhong, Ping & Zhang, Xian & Zhu, Lei, 2018. "Business model design for the carbon capture utilization and storage (CCUS) project in China," Energy Policy, Elsevier, vol. 121(C), pages 519-533.
  2. Jesús Rodríguez-Molina & Margarita Martínez-Núñez & José-Fernán Martínez & Waldo Pérez-Aguiar, 2014. "Business Models in the Smart Grid: Challenges, Opportunities and Proposals for Prosumer Profitability," Energies, MDPI, vol. 7(9), pages 1-30, September.
  3. Muche, Thomas, 2014. "Optimal operation and forecasting policy for pump storage plants in day-ahead markets," Applied Energy, Elsevier, vol. 113(C), pages 1089-1099.
  4. Pedro Crespo Del Granado & Stein Wallace & Zhan Pang, 2016. "The impact of wind uncertainty on the strategic valuation of distributed electricity storage," Computational Management Science, Springer, vol. 13(1), pages 5-27, January.
  5. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  6. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  7. Moreno, Rodrigo & Moreira, Roberto & Strbac, Goran, 2015. "A MILP model for optimising multi-service portfolios of distributed energy storage," Applied Energy, Elsevier, vol. 137(C), pages 554-566.
  8. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
  9. Fares, Robert L. & Meyers, Jeremy P. & Webber, Michael E., 2014. "A dynamic model-based estimate of the value of a vanadium redox flow battery for frequency regulation in Texas," Applied Energy, Elsevier, vol. 113(C), pages 189-198.
  10. Andrew Burlinson & Monica Giulietti, 2018. "Non-traditional business models for city-scale energy storage: evidence from UK case studies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(2), pages 215-242, June.
  11. Richter, Mario, 2013. "German utilities and distributed PV: How to overcome barriers to business model innovation," Renewable Energy, Elsevier, vol. 55(C), pages 456-466.
  12. Ikechi Emmanuel, Michael & Denholm, Paul, 2022. "A market feedback framework for improved estimates of the arbitrage value of energy storage using price-taker models," Applied Energy, Elsevier, vol. 310(C).
  13. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
  14. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
  15. Tom Brijs & Daniel Huppmann & Sauleh Siddiqui & Ronnie Belmans, 2016. "Auction-Based Allocation of Shared Electricity Storage Resources through Physical Storage Rights," Discussion Papers of DIW Berlin 1566, DIW Berlin, German Institute for Economic Research.
  16. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
  17. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
  18. Mirzania, Pegah & Balta-Ozkan, Nazmiye & Ford, Andy, 2020. "An innovative viable model for community-owned solar PV projects without FIT: Comprehensive techno-economic assessment," Energy Policy, Elsevier, vol. 146(C).
  19. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
  20. Daniel Muñoz-Álvarez & Eilyan Bitar, 2017. "Financial storage rights in electric power networks," Journal of Regulatory Economics, Springer, vol. 52(1), pages 1-23, August.
  21. Ute Paukstadt & Jörg Becker, 2021. "Uncovering the business value of the internet of things in the energy domain – a review of smart energy business models," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 51-66, March.
  22. Hamelink, Martijn & Opdenakker, Raymond, 2019. "How business model innovation affects firm performance in the energy storage market," Renewable Energy, Elsevier, vol. 131(C), pages 120-127.
  23. Zucker, Andreas & Hinchliffe, Timothée, 2014. "Optimum sizing of PV-attached electricity storage according to power market signals – A case study for Germany and Italy," Applied Energy, Elsevier, vol. 127(C), pages 141-155.
  24. Fernando N'u~nez & David Canca & 'Angel Arcos-Vargas, 2020. "An assessment of European electricity arbitrage using storage systems," Papers 2010.11912, arXiv.org.
  25. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
  26. Rious, Vincent & Perez, Yannick, 2014. "Review of supporting scheme for island powersystem storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 754-765.
  27. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
  28. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
  29. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  30. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
  31. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
  32. Tom Brijs & Frederik Geth & Sauleh Siddiqui & Benjamin F. Hobbs & Ronnie Belmans, 2016. "Price-Based Unit Commitment Electricity Storage Arbitrage with Piecewise Linear Price-Effects," Discussion Papers of DIW Berlin 1567, DIW Berlin, German Institute for Economic Research.
  33. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
  34. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
  35. Arteaga, Juan & Zareipour, Hamidreza & Amjady, Nima, 2021. "Energy Storage as a Service: Optimal sizing for Transmission Congestion Relief," Applied Energy, Elsevier, vol. 298(C).
  36. Fares, Robert L. & Webber, Michael E., 2014. "A flexible model for economic operational management of grid battery energy storage," Energy, Elsevier, vol. 78(C), pages 768-776.
  37. Julian Marius Müller & Raphael Kunderer, 2019. "Ex-Ante Prediction of Disruptive Innovation: The Case of Battery Technologies," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
  38. Richter, Mario, 2013. "Business model innovation for sustainable energy: German utilities and renewable energy," Energy Policy, Elsevier, vol. 62(C), pages 1226-1237.
  39. González-Aparicio, I. & Zucker, A., 2015. "Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain," Applied Energy, Elsevier, vol. 159(C), pages 334-349.
  40. Schriever, Marlene & Halstrup, Dominik, 2018. "Exploring the adoption in transitioning markets: Empirical findings and implications on energy storage solutions-acceptance in the German manufacturing industry," Energy Policy, Elsevier, vol. 120(C), pages 460-468.
  41. Ahmed Gailani & Tracey Crosbie & Maher Al-Greer & Michael Short & Nashwan Dawood, 2020. "On the Role of Regulatory Policy on the Business Case for Energy Storage in Both EU and UK Energy Systems: Barriers and Enablers," Energies, MDPI, vol. 13(5), pages 1-20, March.
  42. Fabian Scheller & Robert Burkhardt & Robert Schwarzeit & Russell McKenna & Thomas Bruckner, 2020. "Competition between simultaneous demand-side flexibility options: The case of community electricity storage systems," Papers 2011.05809, arXiv.org.
  43. Scheller, Fabian & Burkhardt, Robert & Schwarzeit, Robert & McKenna, Russell & Bruckner, Thomas, 2020. "Competition between simultaneous demand-side flexibility options: the case of community electricity storage systems," Applied Energy, Elsevier, vol. 269(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.