IDEAS home Printed from https://ideas.repec.org/r/pra/mprapa/50881.html
   My bibliography  Save this item

Modeling and Forecasting Electricity Spot Prices: A Functional Data Perspective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
  2. Florian Ziel & Rick Steinert & Sven Husmann, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Papers 1501.00818, arXiv.org, revised Dec 2015.
  3. repec:dui:wpaper:1502 is not listed on IDEAS
  4. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
  5. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
  6. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
  7. Danielle Devogelaer & Benoît Laine, 2016. "Working Paper 09-16 - Drivers of wholesale electricity prices in a small, open economy - Some evidence from the nuclear restart in Belgium [Working Paper 09-16 - Marché de l’électricité : facteurs ," Working Papers 1609, Federal Planning Bureau, Belgium.
  8. Imaizumi, Masaaki & Kato, Kengo, 2018. "PCA-based estimation for functional linear regression with functional responses," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 15-36.
  9. Florian Ziel & Rick Steinert & Sven Husmann, 2014. "Efficient Modeling and Forecasting of the Electricity Spot Price," Papers 1402.7027, arXiv.org, revised Oct 2014.
  10. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
  11. A. Delaigle & P. Hall, 2016. "Approximating fragmented functional data by segments of Markov chains," Biometrika, Biometrika Trust, vol. 103(4), pages 779-799.
  12. Michael Polson & Vadim Sokolov, 2018. "Deep Learning for Energy Markets," Papers 1808.05527, arXiv.org, revised Apr 2019.
  13. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  14. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
  15. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
  16. Alexander Gleim & Nazarii Salish, 2022. "Forecasting Environmental Data: An example to ground-level ozone concentration surfaces," Papers 2202.03332, arXiv.org.
  17. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
  18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
  19. Corredera, Alberto & Ruiz, Carlos, 2023. "Prescriptive selection of machine learning hyperparameters with applications in power markets: Retailer’s optimal trading," European Journal of Operational Research, Elsevier, vol. 306(1), pages 370-388.
  20. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
  21. de Frutos Cachorro, J. & Willeghems, G. & Buysse, J., 2019. "Strategic investment decisions under the nuclear power debate in Belgium," Resource and Energy Economics, Elsevier, vol. 57(C), pages 156-184.
  22. Marco Stefanucci & Laura M. Sangalli & Pierpaolo Brutti, 2018. "PCA‐based discrimination of partially observed functional data, with an application to AneuRisk65 data set," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 246-264, August.
  23. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
  24. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
  25. Katarzyna Maciejowska & Rafał Weron, 2015. "Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships," Computational Statistics, Springer, vol. 30(3), pages 805-819, September.
  26. Daniel Kosiorowski & Jerzy P. Rydlewski & Ma{l}gorzata Snarska, 2016. "Detecting a Structural Change in Functional Time Series Using Local Wilcoxon Statistic," Papers 1604.03776, arXiv.org, revised Oct 2019.
  27. Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
  28. Kraus, David & Stefanucci, Marco, 2020. "Ridge reconstruction of partially observed functional data is asymptotically optimal," Statistics & Probability Letters, Elsevier, vol. 165(C).
  29. Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
  30. Komi Nagbe & Jairo Cugliari & Julien Jacques, 2018. "Short-Term Electricity Demand Forecasting Using a Functional State Space Model," Energies, MDPI, vol. 11(5), pages 1-24, May.
  31. Fabrizio Durante & Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2022. "A Multivariate Dependence Analysis for Electricity Prices, Demand and Renewable Energy Sources," Papers 2201.01132, arXiv.org.
  32. Corredera, Alberto, 2022. "Prescriptive selection of machine learning hyperparameters with applications in power markets: retailer's optimal trading," DES - Working Papers. Statistics and Econometrics. WS 33693, Universidad Carlos III de Madrid. Departamento de Estadística.
  33. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  34. Jorge Barrientos Marin & Laura Marquez Marulanda & Fernando Villada Duque, 2023. "Analyzing Electricity Demand in Colombia: A Functional Time Series Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 75-84, January.
  35. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
  36. Santiago Gall n & Jorge Barrientos, 2021. "Forecasting the Colombian Electricity Spot Price under a Functional Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 67-74.
  37. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
  38. Katarzyna Maciejowska & Rafal Weron, 2015. "Short- and mid-term forecasting of baseload electricity prices in the UK: The impact of intra-day price relationships and market fundamentals," HSC Research Reports HSC/15/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  39. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
  40. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.
  41. Hirth, Lion & Khanna, Tarun & Ruhnau, Oliver, 2022. "The (very) short-term price elasticity of German electricity demand," EconStor Preprints 249570, ZBW - Leibniz Information Centre for Economics.
  42. Liebl, Dominik & Rameseder, Stefan, 2019. "Partially observed functional data: The case of systematically missing parts," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 104-115.
  43. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
  44. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
  45. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Forecasting day ahead electricity spot prices: The impact of the EXAA to other European electricity markets," Energy Economics, Elsevier, vol. 51(C), pages 430-444.
  46. Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.
  47. Chen Tang & Yanlin Shi, 2021. "Forecasting High-Dimensional Financial Functional Time Series: An Application to Constituent Stocks in Dow Jones Index," JRFM, MDPI, vol. 14(8), pages 1-13, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.