IDEAS home Printed from https://ideas.repec.org/r/pra/mprapa/35266.html
   My bibliography  Save this item

Are oil, gold and the euro inter-related? time series and neural network analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2014. "Dynamic spillovers of oil price shocks and economic policy uncertainty," Energy Economics, Elsevier, vol. 44(C), pages 433-447.
  2. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
  3. Omura, Akihiro & Todorova, Neda & Li, Bin & Chung, Richard, 2016. "Steel scrap and equity market in Japan," Resources Policy, Elsevier, vol. 47(C), pages 115-124.
  4. Shahani, Rakesh & Paliwal, Riya, 2020. "An empirical analysis of the Co-movement of Crude, Gold, Rupee-Dollar Exchange rate and Nifty 50 Stock Index during Sub-prime and Coronavirus crisis periods," MPRA Paper 103568, University Library of Munich, Germany.
  5. O'Connor, Fergal A. & Lucey, Brian M. & Batten, Jonathan A. & Baur, Dirk G., 2015. "The financial economics of gold — A survey," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 186-205.
  6. Syed Jawad Hussain Shahzad & Elie Bouri & Naveed Raza & David Roubaud, 2019. "Asymmetric impacts of disaggregated oil price shocks on uncertainties and investor sentiment," Review of Quantitative Finance and Accounting, Springer, vol. 52(3), pages 901-921, April.
  7. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Gold and exchange rates: Downside risk and hedging at different investment horizons," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 267-279.
  8. Wang, Xinya & Lucey, Brian & Huang, Shupei, 2022. "Can gold hedge against oil price movements: Evidence from GARCH-EVT wavelet modeling," Journal of Commodity Markets, Elsevier, vol. 27(C).
  9. Fathi Abid & Bilel Kaffel, 2018. "The extent of virgin olive-oil prices’ distribution revealing the behavior of market speculators," Review of Quantitative Finance and Accounting, Springer, vol. 50(2), pages 561-590, February.
  10. Nikolaos Antonakakis & Ioannis Chatziantoniou & George Filis, 2014. "Dynamic Spillovers of Oil Price Shocks and Policy Uncertainty," Department of Economics Working Papers wuwp166, Vienna University of Economics and Business, Department of Economics.
  11. Thomas Conlon & Brian M. Lucey & Gazi Salah Uddin, 2018. "Is gold a hedge against inflation? A wavelet time-scale perspective," Review of Quantitative Finance and Accounting, Springer, vol. 51(2), pages 317-345, August.
  12. Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 61(C).
  13. Amine Ben Amar & Jean‐Étienne Carlotti, 2021. "Who drives the dance? Further insights from a time‐frequency wavelet analysis of the interrelationship between stock markets and uncertainty," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1623-1636, January.
  14. Jin-Ray Lu & Chih-Ming Chan, 2014. "Optimal portfolio choice of gold assets in the differential market and differential game structures," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 309-325, February.
  15. Junhuan Zhang & Peter McBurney & Katarzyna Musial, 2018. "Convergence of trading strategies in continuous double auction markets with boundedly-rational networked traders," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 301-352, January.
  16. Ana Lazcano & Pedro Javier Herrera & Manuel Monge, 2023. "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting," Mathematics, MDPI, vol. 11(1), pages 1-21, January.
  17. Salisu, Afees A. & Adediran, Idris & Omoke, Philip C. & Tchankam, Jean Paul, 2023. "Gold and tail risks," Resources Policy, Elsevier, vol. 80(C).
  18. Konstantinos Gkillas & Rangan Gupta & Mark E. Wohar, 2020. "Oil shocks and volatility jumps," Review of Quantitative Finance and Accounting, Springer, vol. 54(1), pages 247-272, January.
  19. Malliaris, A.G. & Malliaris, Mary, 2015. "What drives gold returns? A decision tree analysis," Finance Research Letters, Elsevier, vol. 13(C), pages 45-53.
  20. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
  21. Joscha Beckmann & Robert Czudaj, 2013. "Oil and gold price dynamics in a multivariate cointegration framework," International Economics and Economic Policy, Springer, vol. 10(3), pages 453-468, September.
  22. George Filis & Ioannis Chatziantoniou, 2014. "Financial and monetary policy responses to oil price shocks: evidence from oil-importing and oil-exporting countries," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 709-729, May.
  23. Ibrahim, Zil Farlilah & Masih, Mansur, 2017. "Is gold a better choice as reserve currency for smaller market economies?," MPRA Paper 105474, University Library of Munich, Germany.
  24. Abid, Fathi & Kaffel, Bilel, 2018. "Time–frequency wavelet analysis of the interrelationship between the global macro assets and the fear indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1028-1045.
  25. Shang, Jin & Hamori, Shigeyuki, 2024. "Quantile time-frequency connectedness analysis between crude oil, gold, financial markets, and macroeconomic indicators: Evidence from the US and EU," Energy Economics, Elsevier, vol. 132(C).
  26. Abdulrazak Nur Mohamed & Idiris Sid Ali Mohamed, 2023. "Precious Metals and Oil Price Dynamics," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 119-128, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.