IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v98y2011i4p901-918.html
   My bibliography  Save this item

Estimation of latent factors for high-dimensional time series

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
  2. Puyi Fang & Zhaoxing Gao & Ruey S. Tsay, 2023. "Determination of the effective cointegration rank in high-dimensional time-series predictive regressions," Papers 2304.12134, arXiv.org, revised Apr 2023.
  3. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," LSE Research Online Documents on Economics 61886, London School of Economics and Political Science, LSE Library.
  4. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
  5. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
  6. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
  7. Gao, Zhaoxing & Ma, Yingying & Wang, Hansheng & Yao, Qiwei, 2019. "Banded spatio-temporal autoregressions," Journal of Econometrics, Elsevier, vol. 208(1), pages 211-230.
  8. Chen, Rong & Xiao, Han & Yang, Dan, 2021. "Autoregressive models for matrix-valued time series," Journal of Econometrics, Elsevier, vol. 222(1), pages 539-560.
  9. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
  10. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
  11. Liu, Xialu & Xiao, Han & Chen, Rong, 2016. "Convolutional autoregressive models for functional time series," Journal of Econometrics, Elsevier, vol. 194(2), pages 263-282.
  12. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  13. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
  14. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
  15. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
  16. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
  17. Valdério Anselmo Reisen & Céline Lévy-Leduc & Edson Zambon Monte & Pascal Bondon, 2024. "A dimension reduction factor approach for multivariate time series with long-memory: a robust alternative method," Statistical Papers, Springer, vol. 65(5), pages 2865-2886, July.
  18. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
  19. Li, Weiming & Gao, Jing & Li, Kunpeng & Yao, Qiwei, 2016. "Modelling multivariate volatilities via latent common factors," LSE Research Online Documents on Economics 68121, London School of Economics and Political Science, LSE Library.
  20. Liu, Xialu & Chen, Rong, 2020. "Threshold factor models for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 53-70.
  21. Gianluca Cubadda, 2024. "VAR models with an index structure: A survey with new results," Papers 2412.11278, arXiv.org.
  22. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
  23. Passemier, Damien & Yao, Jianfeng, 2014. "Estimation of the number of spikes, possibly equal, in the high-dimensional case," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 173-183.
  24. Ruofan Yu & Rong Chen & Han Xiao & Yuefeng Han, 2024. "Dynamic Matrix Factor Models for High Dimensional Time Series," Papers 2407.05624, arXiv.org.
  25. Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
  26. Ruey S. Tsay, 2016. "Some Methods for Analyzing Big Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 673-688, October.
  27. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
  28. Reisen, Valdério Anselmo & Sgrancio, Adriano Marcio & Lévy-Leduc, Céline & Bondon, Pascal & Monte, Edson Zambon & Aranda Cotta, Higor Henrique & Ziegelmann, Flávio Augusto, 2019. "Robust factor modelling for high-dimensional time series: An application to air pollution data," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 842-852.
  29. Jiang, Bin & Yang, Yanrong & Gao, Jiti & Hsiao, Cheng, 2021. "Recursive estimation in large panel data models: Theory and practice," Journal of Econometrics, Elsevier, vol. 224(2), pages 439-465.
  30. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
  31. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
  32. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
  33. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
  34. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
  35. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
  36. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
  37. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
  38. Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
  39. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
  40. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
  41. Tata Subba Rao & Granville Tunnicliffe Wilson & Ngai Hang Chan & Ye Lu & Chun Yip Yau, 2017. "Factor Modelling for High-Dimensional Time Series: Inference and Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 285-307, March.
  42. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
  43. Guerrero, Víctor & Islas C., Alejandro & Poncela, Pilar & Rodríguez, Julio & Sánchez-Mangas, Rocío, 2014. "Mexico: Combining monthly inflation predictions from surveys," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), August.
  44. Jorge Caiado & Nuno Crato & Pilar Poncela, 2020. "A fragmented-periodogram approach for clustering big data time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 117-146, March.
  45. Lee, Chung Eun & Zhang, Xin, 2024. "Conditional mean dimension reduction for tensor time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  46. Chang, Jinyuan & Guo, Bin & Yao, Qiwei, 2015. "High dimensional stochastic regression with latent factors, endogeneity and nonlinearity," Journal of Econometrics, Elsevier, vol. 189(2), pages 297-312.
  47. Chen Tang & Yanlin Shi, 2021. "Forecasting High-Dimensional Financial Functional Time Series: An Application to Constituent Stocks in Dow Jones Index," JRFM, MDPI, vol. 14(8), pages 1-13, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.