IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v91y2004i4p819-834.html
   My bibliography  Save this item

A crossvalidation method for estimating conditional densities

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Han-Ying Liang & Jong-Il Baek, 2016. "Asymptotic normality of conditional density estimation with left-truncated and dependent data," Statistical Papers, Springer, vol. 57(1), pages 1-20, March.
  2. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
  3. Ann-Kathrin Bott & Michael Kohler, 2017. "Nonparametric estimation of a conditional density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 189-214, February.
  4. Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
  5. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
  6. Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
  7. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
  8. Ann-Kathrin Bott & Michael Kohler, 2016. "Adaptive Estimation of a Conditional Density," International Statistical Review, International Statistical Institute, vol. 84(2), pages 291-316, August.
  9. Obbey Elamin & Len Gill & Martyn Andrews, 2020. "Insights from kernel conditional-probability estimates into female labour force participation decision in the UK," Empirical Economics, Springer, vol. 58(6), pages 2981-3006, June.
  10. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
  11. Holmes, Michael P. & Gray, Alexander G. & Isbell Jr., Charles Lee, 2010. "Fast kernel conditional density estimation: A dual-tree Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1707-1718, July.
  12. Tang, Yongqiang & Ghosal, Subhashis, 2007. "A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4424-4437, May.
  13. Kateřina Konečná & Ivanka Horová, 2019. "Maximum likelihood method for bandwidth selection in kernel conditional density estimate," Computational Statistics, Springer, vol. 34(4), pages 1871-1887, December.
  14. Wen, Kuangyu & Wu, Ximing, 2017. "Smoothed kernel conditional density estimation," Economics Letters, Elsevier, vol. 152(C), pages 112-116.
  15. Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
  16. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
  17. Liu, Yang & Liang, Yanzi & Lan, Xinchen & Lu, Zheng, 2024. "Nonparametric statistical inference for stochastic optimal control problems and its applications for financial investment," Finance Research Letters, Elsevier, vol. 64(C).
  18. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
  19. Kasahara, Hiroyuki & Liang, Yawen & Rodrigue, Joel, 2016. "Does importing intermediates increase the demand for skilled workers? Plant-level evidence from Indonesia," Journal of International Economics, Elsevier, vol. 102(C), pages 242-261.
  20. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
  21. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2017. "Smooth copula-based estimation of the conditional density function with a single covariate," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 39-48.
  22. Otneim, Håkon & Tjøstheim, Dag, 2016. "Non-parametric estimation of conditional densities: A new method," Discussion Papers 2016/22, Norwegian School of Economics, Department of Business and Management Science.
  23. Ichimura, Tsuyoshi & Fukuda, Daisuke, 2010. "A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3404-3410, December.
  24. Taylor, James W. & Jeon, Jooyoung, 2015. "Forecasting wind power quantiles using conditional kernel estimation," Renewable Energy, Elsevier, vol. 80(C), pages 370-379.
  25. Wang, Xiao-Feng & Ye, Deping, 2015. "Conditional density estimation in measurement error problems," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 38-50.
  26. Giwhyun Lee & Yu Ding & Marc G. Genton & Le Xie, 2015. "Power Curve Estimation With Multivariate Environmental Factors for Inland and Offshore Wind Farms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 56-67, March.
  27. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
  28. Michael Kohler & Adam Krzyżak, 2020. "Estimating quantiles in imperfect simulation models using conditional density estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 123-155, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.