IDEAS home Printed from https://ideas.repec.org/r/nat/nature/v454y2008i7206d10.1038_nature07084.html
   My bibliography  Save this item

Inapparent infections and cholera dynamics

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
  2. Lux, Thomas, 2022. "Inference for Nonlinear State Space Models: A Comparison of Different Methods applied to Markov-Switching Multifractal Models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 69-95.
  3. Sourya Shrestha & Aaron A King & Pejman Rohani, 2011. "Statistical Inference for Multi-Pathogen Systems," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-14, August.
  4. David R J Pleydell & Samuel Soubeyrand & Sylvie Dallot & Gérard Labonne & Joël Chadœuf & Emmanuel Jacquot & Gaël Thébaud, 2018. "Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-24, April.
  5. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
  6. Steve E Bellan & Juliet R C Pulliam & James C Scott & Jonathan Dushoff & the MMED Organizing Committee, 2012. "How to Make Epidemiological Training Infectious," PLOS Biology, Public Library of Science, vol. 10(4), pages 1-8, April.
  7. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
  8. Yohana Maiga Marwa & Isambi Sailon Mbalawata & Samuel Mwalili, 2019. "Continuous Time Markov Chain Model for Cholera Epidemic Transmission Dynamics," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(3), pages 1-32, November.
  9. Gabriel Kolaye Guilsou & Moulay-Ahmed Aziz-Alaoui & Raymond Houé Ngouna & Bernard Archimede & Samuel Bowong, 2023. "Gaining Profound Knowledge of Cholera Outbreak: The Significance of the Allee Effect on Bacterial Population Growth and Its Implications for Human-Environment Health," Sustainability, MDPI, vol. 15(13), pages 1-30, June.
  10. Ross, J.V. & Pagendam, D.E. & Pollett, P.K., 2009. "On parameter estimation in population models II: Multi-dimensional processes and transient dynamics," Theoretical Population Biology, Elsevier, vol. 75(2), pages 123-132.
  11. Lawrence W Sheppard & Emma J Defriez & Philip C Reid & Daniel C Reuman, 2019. "Synchrony is more than its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-25, March.
  12. Christina H Chan & Ashleigh R Tuite & David N Fisman, 2013. "Historical Epidemiology of the Second Cholera Pandemic: Relevance to Present Day Disease Dynamics," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
  13. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
  14. Tobias S Brett & Eamon B O’Dea & Éric Marty & Paige B Miller & Andrew W Park & John M Drake & Pejman Rohani, 2018. "Anticipating epidemic transitions with imperfect data," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-18, June.
  15. Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.
  16. Hussain, Takasar & Ozair, Muhammad & Komal, Ammara & Awan, Aziz Ullah & Alshahrani, B. & Abdelwahab, Sayed F. & Abdel-Aty, Abdel-Haleem, 2021. "Theoretical assessment of cholera disease and its control measures," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  17. Lindström, Erik, 2013. "Tuned iterated filtering," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2077-2080.
  18. Stephen Ekwueme Aniaku & Obiora Cornelius Collins & Ifeanyi Sunday Onah, 2023. "Analysis and Optimal Control Measures of a Typhoid Fever Mathematical Model for Two Socio-Economic Populations," Mathematics, MDPI, vol. 11(23), pages 1-24, November.
  19. Cai, Li-Ming & Modnak, Chairat & Wang, Jin, 2017. "An age-structured model for cholera control with vaccination," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 127-140.
  20. Njagarah, J.B.H. & Tabi, C.B., 2018. "Spatial synchrony in fractional order metapopulation cholera transmission," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 37-49.
  21. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
  22. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
  23. Ross Sparks & Tim Keighley & David Muscatello, 2010. "Early warning CUSUM plans for surveillance of negative binomial daily disease counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1911-1929.
  24. David A Rasmussen & Oliver Ratmann & Katia Koelle, 2011. "Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-11, August.
  25. King, Aaron A. & Nguyen, Dao & Ionides, Edward L., 2016. "Statistical Inference for Partially Observed Markov Processes via the R Package pomp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i12).
  26. Lili Zhuang & Noel Cressie, 2014. "Bayesian hierarchical statistical SIRS models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 601-646, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.