IDEAS home Printed from https://ideas.repec.org/r/inm/ortrsc/v34y2000i3p289-302.html
   My bibliography  Save this item

A Bilevel Model and Solution Algorithm for a Freight Tariff-Setting Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hoesel Stan van & Kraaij Anton F. van der & Mannino Carlo & Bouhtou Mustapha & Oriolo Gianpaolo, 2003. "Polynomial cases of the tarification problem," Research Memorandum 063, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  2. Tawfik, Christine & Gendron, Bernard & Limbourg, Sabine, 2022. "An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model," European Journal of Operational Research, Elsevier, vol. 300(2), pages 512-526.
  3. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
  4. Christine Tawfik & Sabine Limbourg, 2018. "Pricing Problems in Intermodal Freight Transport: Research Overview and Prospects," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
  5. Moreno-Quintero, Eric & Fowkes, Tony & Watling, David, 2013. "Modelling planner–carrier interactions in road freight transport: Optimisation of road maintenance costs via overloading control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 68-83.
  6. Shibasaki, Ryuichi & Ieda, Hitoshi & Watanabe, Tomihiro, 2005. "An International Container Shipping Model in East Asia and its Transferability," Research in Transportation Economics, Elsevier, vol. 13(1), pages 299-336, January.
  7. Jean Cardinal & Erik D. Demaine & Samuel Fiorini & Gwenaël Joret & Ilan Newman & Oren Weimann, 2013. "The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs," Journal of Combinatorial Optimization, Springer, vol. 25(1), pages 19-46, January.
  8. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
  9. van Hoesel, Stan, 2008. "An overview of Stackelberg pricing in networks," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1393-1402, September.
  10. Martine Labbé & Alessia Violin, 2016. "Bilevel programming and price setting problems," Annals of Operations Research, Springer, vol. 240(1), pages 141-169, May.
  11. Laure Cabantous & Gilbert Laporte, 2015. "ASP, The Art and Science of Practice: Academia-Industry Interfacing in Operations Research in Montréal," Interfaces, INFORMS, vol. 45(6), pages 554-566, December.
  12. Mustapha Bouhtou & Stan van Hoesel & Anton F. van der Kraaij & Jean-Luc Lutton, 2007. "Tariff Optimization in Networks," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 458-469, August.
  13. Escudero, Laureano F. & Monge, Juan F. & Rodríguez-Chía, Antonio M., 2020. "On pricing-based equilibrium for network expansion planning. A multi-period bilevel approach under uncertainty," European Journal of Operational Research, Elsevier, vol. 287(1), pages 262-279.
  14. Alizadeh, S.M. & Marcotte, P. & Savard, G., 2013. "Two-stage stochastic bilevel programming over a transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 92-105.
  15. Robbins, Matthew J. & Lunday, Brian J., 2016. "A bilevel formulation of the pediatric vaccine pricing problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 634-645.
  16. Quang Minh Bui & Bernard Gendron & Margarida Carvalho, 2022. "A Catalog of Formulations for the Network Pricing Problem," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2658-2674, September.
  17. Afşar, Sezin & Brotcorne, Luce & Marcotte, Patrice & Savard, Gilles, 2016. "Achieving an optimal trade-off between revenue and energy peak within a smart grid environment," Renewable Energy, Elsevier, vol. 91(C), pages 293-301.
  18. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
  19. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
  20. Jean Etoa, 2010. "Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 615-637, August.
  21. Li Li & Sridhar Tayur, 2005. "Medium-Term Pricing and Operations Planning in Intermodal Transportation," Transportation Science, INFORMS, vol. 39(1), pages 73-86, February.
  22. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2008. "Joint Design and Pricing on a Network," Operations Research, INFORMS, vol. 56(5), pages 1104-1115, October.
  23. Tamás Kis & András Kovács & Csaba Mészáros, 2021. "On Optimistic and Pessimistic Bilevel Optimization Models for Demand Response Management," Energies, MDPI, vol. 14(8), pages 1-22, April.
  24. Li, Xinyan & Xie, Chi & Bao, Zhaoyao, 2022. "A multimodal multicommodity network equilibrium model with service capacity and bottleneck congestion for China-Europe containerized freight flows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  25. Cheng, Chi-Bin, 2011. "Reverse auction with buyer-supplier negotiation using bi-level distributed programming," European Journal of Operational Research, Elsevier, vol. 211(3), pages 601-611, June.
  26. Avinash Unnikrishnan & Varunraj Valsaraj & Steven Waller, 2009. "Stochastic and Dynamic Shipper Carrier Network Design Problem," Networks and Spatial Economics, Springer, vol. 9(4), pages 525-550, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.