My bibliography
Save this item
Crumbs of the Cookie: User Profiling in Customer-Base Analysis and Behavioral Targeting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
- Nico Neumann & Catherine E. Tucker & Timothy Whitfield, 2019. "Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies," Marketing Science, INFORMS, vol. 38(6), pages 918-926, November.
- Paramveer S. Dhillon & Sinan Aral, 2021. "Modeling Dynamic User Interests: A Neural Matrix Factorization Approach," Marketing Science, INFORMS, vol. 40(6), pages 1059-1080, November.
- K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302, Cowles Foundation for Research in Economics, Yale University.
- Luis Aguiar & Christian Peukert & Maximilian Schafer & Hannes Ullrich, 2022.
"Facebook Shadow Profiles,"
Papers
2202.04131, arXiv.org, revised Jul 2022.
- Luis Aguiar & Christian Peukert & Maximilian Schaefer & Hannes Ullrich, 2022. "Facebook Shadow Profiles," CESifo Working Paper Series 9571, CESifo.
- Luis Aguiar & Christian Peukert & Maximilian Schäfer & Hannes Ullrich, 2024. "Facebook Shadow Profiles," Working Papers hal-04495641, HAL.
- Luis Aguiar & Christian Peukert & Maximilian Schäfer & Hannes Ullrich, 2022. "Facebook Shadow Profiles," Discussion Papers of DIW Berlin 1998, DIW Berlin, German Institute for Economic Research.
- K. Sudhir & Seung Yoon Lee & Subroto Roy, 2021. "Lookalike Targeting on Others' Journeys: Brand Versus Performance Marketing," Cowles Foundation Discussion Papers 2302R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2022.
- Yi Sun & Teruaki Hayashi & Yukio Ohsawa, 2021. "A Latent Topic Analysis and Visualization Framework for Category-Level Target Promotion in the Supermarket," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 429-453, November.
- Tesary Lin & Sanjog Misra, 2022. "Frontiers: The Identity Fragmentation Bias," Marketing Science, INFORMS, vol. 41(3), pages 433-440, May.
- Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
- Joachim Büschken & Greg M. Allenby, 2020. "Improving Text Analysis Using Sentence Conjunctions and Punctuation," Marketing Science, INFORMS, vol. 39(4), pages 727-742, July.
- Felipe Thomaz & Carolina Salge & Elena Karahanna & John Hulland, 2020. "Learning from the Dark Web: leveraging conversational agents in the era of hyper-privacy to enhance marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 43-63, January.
- Sotaro Katsumata & Seungjin Kim, 2020. "The Text-Score Allocation Model: Finding Latent Topics of Online Review Documents and Multi-Item Ratings," Discussion Papers in Economics and Business 20-01, Osaka University, Graduate School of Economics.
- El Hana, Nadr & Mercanti-Guérin, Maria & Sabri, Ouidade, 2023. "Cookiepocalypse: What are the most effective strategies for advertisers to reshape the future of display advertising?," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.
- Bruno Jacobs & Dennis Fok & Bas Donkers, 2021.
"Understanding Large-Scale Dynamic Purchase Behavior,"
Marketing Science, INFORMS, vol. 40(5), pages 844-870, September.
- Jacobs, B.J.D. & Fok, D. & Donkers, A.C.D., 2020. "Understanding Large-Scale Dynamic Purchase Behavior," ERIM Report Series Research in Management ERS-2020-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Dawn Iacobucci & Maria Petrescu & Anjala Krishen & Michael Bendixen, 2019. "The state of marketing analytics in research and practice," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 152-181, September.
- Cloarec, Julien & Cadieu, Charlotte & Alrabie, Nour, 2024. "Tracking technologies in eHealth: Revisiting the personalization-privacy paradox through the transparency-control framework," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Stylianos Despotakis & Jungju Yu, 2023. "Multidimensional Targeting and Consumer Response," Management Science, INFORMS, vol. 69(8), pages 4518-4540, August.
- Nico Neumann & Catherine E. Tucker & Kumar Subramanyam & John Marshall, 2023. "Is first- or third-party audience data more effective for reaching the ‘right’ customers? The case of IT decision-makers," Quantitative Marketing and Economics (QME), Springer, vol. 21(4), pages 519-571, December.
- Shaheer, Noman & Kim, Kijong & Li, Sali, 2022. "Internationalization of Digital Innovations: A Rapidly Evolving Research Stream," Journal of International Management, Elsevier, vol. 28(4).
- Amira M. Omar & Nermine Atteya, 2021. "The Impact of Digital Marketing on Consumer Buying Decision Process in the Egyptian Market," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(7), pages 120-120, July.
- Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
- Schröder, Nadine & Falke, Andreas & Hruschka, Harald & Reutterer, Thomas, 2019. "Analyzing the Browsing Basket: A Latent Interests-Based Segmentation Tool," Journal of Interactive Marketing, Elsevier, vol. 47(C), pages 181-197.
- Andreas Falke & Harald Hruschka, 2022. "Analyzing browsing across websites by machine learning methods," Journal of Business Economics, Springer, vol. 92(5), pages 829-852, July.
- Mukhopadhyay, Soumya & Vijayalakshmi, Akshaya & Jain, Shailendra P., 2023. "Understanding consumers in-store behavior: The dual role of episode-specific motive adjustment and motive selection," Journal of Retailing, Elsevier, vol. 99(3), pages 460-479.
- Djonata Schiessl & Helison Bertoli Alves Dias & José Carlos Korelo, 2022. "Artificial intelligence in marketing: a network analysis and future agenda," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 207-218, September.
- Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
- Pradeep Chintagunta & Dominique M. Hanssens & John R. Hauser, 2016. "Editorial—Marketing Science and Big Data," Marketing Science, INFORMS, vol. 35(3), pages 341-342, May.
- Lu, Jialiang & Zheng, Xu & Nervino, Esterina & Li, Yanzhi & Xu, Zhihua & Xu, Yabo, 2024. "Retail store location screening: A machine learning-based approach," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
- Martin Reisenbichler & Thomas Reutterer, 2019. "Topic modeling in marketing: recent advances and research opportunities," Journal of Business Economics, Springer, vol. 89(3), pages 327-356, April.
- Guyt, Jonne Y. & Datta, Hannes & Boegershausen, Johannes, 2024. "Unlocking the Potential of Web Data for Retailing Research," Journal of Retailing, Elsevier, vol. 100(1), pages 130-147.
- Miikka Blomster & Timo Koivumäki, 2022. "Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing," Information Systems and e-Business Management, Springer, vol. 20(1), pages 123-169, March.
- Tesary Lin & Avner Strulov-Shlain, 2023. "Choice Architecture, Privacy Valuations, and Selection Bias in Consumer Data," Papers 2308.13496, arXiv.org.
- Jia Liu & Olivier Toubia, 2018. "A Semantic Approach for Estimating Consumer Content Preferences from Online Search Queries," Marketing Science, INFORMS, vol. 37(6), pages 930-952, November.
- Rene Laub & Klaus M. Miller & Bernd Skiera, 2023. "The Economic Value of User Tracking for Publishers," Papers 2303.10906, arXiv.org, revised Apr 2024.
- Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
- Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.