IDEAS home Printed from https://ideas.repec.org/r/ids/ijcist/v1y2004i1p108-117.html
   My bibliography  Save this item

Assessing infrastructure interdependencies: the challenge of risk analysis for complex adaptive systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
  2. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
  3. Mishra, Vishrut Kumar & Palleti, Venkata Reddy & Mathur, Aditya, 2019. "A modeling framework for critical infrastructure and its application in detecting cyber-attacks on a water distribution system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
  4. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
  5. Yacov Y. Haimes & Kenneth Crowther & Barry M. Horowitz, 2008. "Homeland security preparedness: Balancing protection with resilience in emergent systems," Systems Engineering, John Wiley & Sons, vol. 11(4), pages 287-308, December.
  6. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
  7. Gloria Pumpuni‐Lenss & Timothy Blackburn & Andreas Garstenauer, 2017. "Resilience in Complex Systems: An Agent‐Based Approach," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 158-172, March.
  8. Kulawiak, Marcin & Lubniewski, Zbigniew, 2014. "SafeCity — A GIS-based tool profiled for supporting decision making in urban development and infrastructure protection," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 174-187.
  9. Siyuan Gao & Fengrong Zhang & Wei Ning & Dayong Wu, 2022. "Optimization of Cargo Shipping Adaptability Modeling Evaluation Based on Bayesian Network Algorithm," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
  10. Kenneth G. Crowther & Yacov Y. Haimes, 2010. "Development of the multiregional inoperability input‐output model (MRIIM) for spatial explicitness in preparedness of interdependent regions," Systems Engineering, John Wiley & Sons, vol. 13(1), pages 28-46, March.
  11. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
  12. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
  13. Barker, Kash & Santos, Joost R., 2010. "Measuring the efficacy of inventory with a dynamic input-output model," International Journal of Production Economics, Elsevier, vol. 126(1), pages 130-143, July.
  14. Galbusera, Luca & Trucco, Paolo & Giannopoulos, Georgios, 2020. "Modeling interdependencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  15. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
  16. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
  17. Feiyi Luo & Zhengfeng Huang & Pengjun Zheng, 2022. "A Study on the Decay Model of Multi-Block Taxi Travel Demand under the Influence of Major Urban Public Health Events," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
  18. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
  19. Ebrahim Bagheri & Ali A. Ghorbani, 2010. "UML-CI: A reference model for profiling critical infrastructure systems," Information Systems Frontiers, Springer, vol. 12(2), pages 115-139, April.
  20. Lam, C.Y. & Tai, K., 2018. "Modeling infrastructure interdependencies by integrating network and fuzzy set theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 51-61.
  21. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
  22. Joost R. Santos & Mark J. Orsi & Erik J. Bond, 2009. "Pandemic Recovery Analysis Using the Dynamic Inoperability Input‐Output Model," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1743-1758, December.
  23. Ahmed Ali A. Mohamed, 2019. "On the Rising Interdependency between the Power Grid, ICT Network, and E-Mobility: Modeling and Analysis," Energies, MDPI, vol. 12(10), pages 1-17, May.
  24. Curnin, Steven, 2018. "Collaboration in disasters: A cultural challenge for the utilities sector," Utilities Policy, Elsevier, vol. 54(C), pages 78-85.
  25. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
  26. Joanna Resurreccion & Joost Santos, 2013. "Uncertainty modeling of hurricane-based disruptions to interdependent economic and infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1497-1518, December.
  27. Fabrizio Baiardi & Daniele Sgandurra, 2013. "Assessing ICT risk through a Monte Carlo method," Environment Systems and Decisions, Springer, vol. 33(4), pages 486-499, December.
  28. Fabrizio Baiardi & Federico Tonelli & Alessandro Bertolini, 2015. "Iterative selection of countermeasures for intelligent threat agents," International Journal of Network Management, John Wiley & Sons, vol. 25(5), pages 340-354, September.
  29. Zhang, Pengcheng & Peeta, Srinivas, 2011. "A generalized modeling framework to analyze interdependencies among infrastructure systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 553-579, March.
  30. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  31. Kaegi, M. & Mock, R. & Kröger, W., 2009. "Analyzing maintenance strategies by agent-based simulations: A feasibility study," Reliability Engineering and System Safety, Elsevier, vol. 94(9), pages 1416-1421.
  32. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
  33. Ryan Hruska & Kent McGillivary & Robert Edsall, 2021. "A Functional All‐Hazard Approach to Critical Infrastructure Dependency Analysis," Journal of Critical Infrastructure Policy, John Wiley & Sons, vol. 2(2), pages 103-123, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.