IDEAS home Printed from https://ideas.repec.org/r/hhs/lunewp/2001_018.html
   My bibliography  Save this item

Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
  2. Pushpa Dissanayake & Teresa Flock & Johanna Meier & Philipp Sibbertsen, 2021. "Modelling Short- and Long-Term Dependencies of Clustered High-Threshold Exceedances in Significant Wave Heights," Mathematics, MDPI, vol. 9(21), pages 1-33, November.
  3. Brännäs, Kurt & Quoreshi, Shahiduzzaman & Simonsen, Ola, 2002. "Extreme-Value Characteristics in Daily Time Series of Swedish Stock Returns," Umeå Economic Studies 597, Umeå University, Department of Economics.
  4. Samit Paul & Madhusudan Karmakar, 2017. "Relative Efficiency of Component GARCH-EVT Approach in Managing Intraday Market Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 21(4), pages 247-283, December.
  5. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
  6. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
  7. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
  8. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2014. "Realized volatility models and alternative Value-at-Risk prediction strategies," Economic Modelling, Elsevier, vol. 40(C), pages 101-116.
  9. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
  10. Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
  11. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
  12. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
  13. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
  14. Lin, Chu-Hsiung & Changchien, Chang-Cheng & Kao, Tzu-Chuan & Kao, Wei-Shun, 2014. "High-order moments and extreme value approach for value-at-risk," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 421-434.
  15. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
  16. Nikolaus Hautsch & Rodrigo Herrera, 2020. "Multivariate dynamic intensity peaks‐over‐threshold models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 248-272, March.
  17. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
  18. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
  19. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
  20. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
  21. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
  22. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
  23. Ian Laker & Chun-Kai Huang & Allan Ernest Clark, 2017. "Dependent bootstrapping for value-at-risk and expected shortfall," Risk Management, Palgrave Macmillan, vol. 19(4), pages 301-322, November.
  24. Ra l de Jes s-Guti rrez & Roberto J. Santill n-Salgado, 2019. "Conditional Extreme Values Theory and Tail-related Risk Measures: Evidence from Latin American Stock Markets," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 127-141.
  25. Konstantinos Tolikas & Athanasios Koulakiotis & Richard A. Brown, 2007. "Extreme Risk and Value-at-Risk in the German Stock Market," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 373-395.
  26. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.