IDEAS home Printed from https://ideas.repec.org/r/hal/journl/hal-02435757.html
   My bibliography  Save this item

Macroeconomic Forecast Accuracy in data-rich environment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
  2. Philippe Goulet Coulombe, 2021. "Slow-Growing Trees," Papers 2103.01926, arXiv.org, revised Jul 2021.
  3. Colombo, Emilio & Pelagatti, Matteo, 2020. "Statistical learning and exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1260-1289.
  4. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
  5. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
  6. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  7. Massimiliano Marcellino & Dalibor Stevanovic, 2022. "The demand and supply of information about inflation," CIRANO Working Papers 2022s-27, CIRANO.
  8. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
  9. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
  10. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
  11. Rachidi Kotchoni & Dalibor Stevanovic, 2020. "GDP Forecast Accuracy During Recessions," Working Papers 20-06, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
  12. Kozyrev, Boris, 2024. "Forecast combination and interpretability using random subspace," IWH Discussion Papers 21/2024, Halle Institute for Economic Research (IWH).
  13. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  14. Daniel Borup & David E. Rapach & Erik Christian Montes Schütte, 2021. "Now- and Backcasting Initial Claims with High-Dimensional Daily Internet Search-Volume Data," CREATES Research Papers 2021-02, Department of Economics and Business Economics, Aarhus University.
  15. Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
  16. Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
  17. Dias, Ishanka K. & Fernando, J.M. Ruwani & Fernando, P. Narada D., 2022. "Does investor sentiment predict bitcoin return and volatility? A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 84(C).
  18. Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
  19. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
  20. repec:hal:journl:hal-04675599 is not listed on IDEAS
  21. Klein, Tony, 2021. "Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes between 2008 and 2020 and the Impact of the COVID19 Labor Shock," QBS Working Paper Series 2021/07, Queen's University Belfast, Queen's Business School.
  22. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
  23. Duo Qin & Sophie van Huellen & Qing Chao Wang & Thanos Moraitis, 2022. "Algorithmic Modelling of Financial Conditions for Macro Predictive Purposes: Pilot Application to USA Data," Econometrics, MDPI, vol. 10(2), pages 1-22, April.
  24. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
  25. Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
  26. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
  27. Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
  28. Engelke, Carola & Heinisch, Katja & Schult, Christoph, 2019. "How forecast accuracy depends on conditioning assumptions," IWH Discussion Papers 18/2019, Halle Institute for Economic Research (IWH).
  29. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.
  30. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.