IDEAS home Printed from https://ideas.repec.org/r/eee/transe/v131y2019icp37-67.html
   My bibliography  Save this item

Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ren, Shuyun & Choi, Tsan-Ming & Lee, Ka-Man & Lin, Lei, 2020. "Intelligent service capacity allocation for cross-border-E-commerce related third-party-forwarding logistics operations: A deep learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
  2. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
  3. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
  4. Zhang, Wenwei & Xu, Min & Wang, Shuaian, 2023. "Joint location and pricing optimization of self-service in urban logistics considering customers’ choice behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
  5. Merchán, Daniel & Winkenbach, Matthias & Snoeck, André, 2020. "Quantifying the impact of urban road networks on the efficiency of local trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 38-62.
  6. Toshihiro Osaragi & Yuya Taguchi & Narushige Shiode & Shino Shiode, 2023. "Evaluation of a Team-Based Collection and Delivery Operation," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
  7. Wang, Qingyi & Nie, Xiaofeng, 2023. "A location-inventory-routing model for distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
  8. Aurelija Burinskienė, 2021. "Designing a Multi-Stage Transport System Serving e-Commerce Activity," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
  9. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  10. Guarino Neto, Luigi & Geraldo Vidal Vieira, José, 2023. "An investigation of consumer intention to use pick-up point services for last-mile distribution in a developing country," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
  11. Snoeck, André & Winkenbach, Matthias & Fransoo, Jan C., 2023. "On-demand last-mile distribution network design with omnichannel inventory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
  12. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
  13. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
  14. Kokkinou, Alinda & Quak, Hans & Mitas, Ondrej & Mandemakers, Albert, 2024. "Should I wait or should I go? Encouraging customers to make the more sustainable delivery choice," Research in Transportation Economics, Elsevier, vol. 103(C).
  15. Prajapati, Dhirendra & Pratap, Saurabh & Zhang, Mengdi & Lakshay, & Huang, George Q., 2022. "Sustainable forward-reverse logistics for multi-product delivery and pickup in B2C E-commerce towards the circular economy," International Journal of Production Economics, Elsevier, vol. 253(C).
  16. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
  17. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
  18. Kotzab, Herbert & Yumurtacı Hüseyinoğlu, Işık Özge & Şen, Irmak & Mena, Carlos, 2024. "Exploring home delivery service attributes: Sustainability versus delivery expectations during the COVID-19 pandemic," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
  19. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  20. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
  21. Louis Faugère & Chelsea White & Benoit Montreuil, 2020. "Mobile Access Hub Deployment for Urban Parcel Logistics," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
  22. Janjevic, Milena & Winkenbach, Matthias, 2020. "Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 164-196.
  23. Wang, Yuan & Lei, Linfei & Zhang, Dongxiang & Lee, Loo Hay, 2020. "Towards delivery-as-a-service: Effective neighborhood search strategies for integrated delivery optimization of E-commerce and static O2O parcels," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 38-63.
  24. Xu, Xianhao & Shen, Yaohan & (Amanda) Chen, Wanying & Gong, Yeming & Wang, Hongwei, 2021. "Data-driven decision and analytics of collection and delivery point location problems for online retailers," Omega, Elsevier, vol. 100(C).
  25. dos Santos, André Gustavo & Viana, Ana & Pedroso, João Pedro, 2022. "2-echelon lastmile delivery with lockers and occasional couriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
  26. Ben Mohamed, Imen & Klibi, Walid & Sadykov, Ruslan & Şen, Halil & Vanderbeck, François, 2023. "The two-echelon stochastic multi-period capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 645-667.
  27. Zhou, Wei & Zhang, Keang & Zhang, Ying & Duan, Yunlong, 2021. "Operation strategies with respect to insurance subsidy optimization for online retailers dealing with large items," International Journal of Production Economics, Elsevier, vol. 232(C).
  28. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
  29. Piya Kerdlap & Aloisius Rabata Purnama & Jonathan Sze Choong Low & Daren Zong Loong Tan & Claire Y. Barlow & Seeram Ramakrishna, 2022. "Comparing the environmental performance of distributed versus centralized plastic recycling systems: Applying hybrid simulation modeling to life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 252-271, February.
  30. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  31. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.