IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v37y2003i2p145-164.html
   My bibliography  Save this item

Real-time control of buses for schedule coordination at a terminal

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hadas, Yuval & Shnaiderman, Matan, 2012. "Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1068-1084.
  2. Toledo, Tomer & Cats , Oded & Burghout, Wilco & Koutsopoulos , Haris N., 2013. "Mesoscopic simulation for transit operations," Working papers in Transport Economics 2013:29, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
  3. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
  4. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
  5. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
  6. Cats, Oded & Loutos, Gerasimos, 2016. "Evaluating the added-value of online bus arrival prediction schemes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 35-55.
  7. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
  8. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
  9. Konstantinos Gkiotsalitis & Nitin Maslekar, 2018. "Towards transfer synchronization of regularity-based bus operations with sequential hill-climbing," Public Transport, Springer, vol. 10(2), pages 335-361, August.
  10. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
  11. Gkiotsalitis, K. & Alesiani, F., 2019. "Robust timetable optimization for bus lines subject to resource and regulatory constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 30-51.
  12. Fan, Yueyue & Zhang, Yunteng, 2019. "Next-Generation Transit System Design During a Revolution of Shared Mobility," Institute of Transportation Studies, Working Paper Series qt77t6g3w4, Institute of Transportation Studies, UC Davis.
  13. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
  14. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  15. Jariyasunant, Jerald & Work, Daniel B. & Kerkez, Branko & Sengupta, Raja & Glaser, Steven & Bayen, Alexandre, 2011. "Mobile Transit Trip Planning with Real-Time Data," University of California Transportation Center, Working Papers qt51t364vz, University of California Transportation Center.
  16. Herbon, Avi & Hadas, Yuval, 2015. "Determining optimal frequency and vehicle capacity for public transit routes: A generalized newsvendor model," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 85-99.
  17. Daganzo, Carlos & Anderson, Paul, 2016. "Coordinating Transit Transfers in Real Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt25h4r974, Institute of Transportation Studies, UC Berkeley.
  18. Liu, Tao & Ceder, Avishai (Avi), 2018. "Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 935-955.
  19. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
  20. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
  21. Chen, Yanru & Yi, Bing & Jiang, Yangsheng & Sun, Jidong & Wahab, M.I.M., 2018. "Inter-arrival time distribution of passengers at service facilities in underground subway stations: A case study of the metropolitan city of Chengdu in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 227-251.
  22. Sun, Yanshuo & Schonfeld, Paul, 2016. "Holding decisions for correlated vehicle arrivals at intermodal freight transfer terminals," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 218-240.
  23. Gang Cheng & Shuzhi Zhao & Tao Zhang, 2019. "A Bi-Level Programming Model for Optimal Bus Stop Spacing of a Bus Rapid Transit System," Mathematics, MDPI, vol. 7(7), pages 1-14, July.
  24. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  25. Yu, Bin & Yang, Zhongzhen & Li, Shan, 2012. "Real-time partway deadheading strategy based on transit service reliability assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1265-1279.
  26. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.