IDEAS home Printed from https://ideas.repec.org/r/eee/reveco/v27y2013icp209-223.html
   My bibliography  Save this item

Return distribution predictability and its implications for portfolio selection

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Jinfang, 2019. "Sentiment trading, informed trading and dynamic asset pricing," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 210-222.
  2. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
  3. Demirer, Rıza & Ferrer, Román & Shahzad, Syed Jawad Hussain, 2020. "Oil price shocks, global financial markets and their connectedness," Energy Economics, Elsevier, vol. 88(C).
  4. Swanson, Norman R. & Urbach, Richard, 2015. "Prediction and simulation using simple models characterized by nonstationarity and seasonality," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
  5. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
  6. Bartosz Łamasz & Natalia Iwaszczuk, 2020. "The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market," Energies, MDPI, vol. 13(20), pages 1-23, October.
  7. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Lee, Wen-Yi & Lin, Shun-Ji, 2020. "Portfolio models with return forecasting and transaction costs," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 118-130.
  8. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
  9. Azhgaliyeva, Dina & Mishra, Ranjeeta & Kapsalyamova, Zhanna, 2021. "Oil Price Shocks and Green Bonds: A Longitudinal Multilevel Model," ADBI Working Papers 1278, Asian Development Bank Institute.
  10. Chen, Rongda & Zhou, Hanxian & Yu, Lean & Jin, Chenglu & Zhang, Shuonan, 2021. "An efficient method for pricing foreign currency options," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
  11. Jasman Tuyon & Zamri Ahmada, 2016. "Behavioural finance perspectives on Malaysian stock market efficiency," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(1), pages 43-61, March.
  12. Gebka, Bartosz & Wohar, Mark E., 2018. "The predictive power of the yield spread for future economic expansions: Evidence from a new approach," Economic Modelling, Elsevier, vol. 75(C), pages 181-195.
  13. Semenov, Andrei, 2015. "The small-cap effect in the predictability of individual stock returns," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 178-197.
  14. Jasman Tuyon & Zamri Ahmad, 2021. "Dynamic risk attributes in Malaysia stock markets: Behavioural finance insights," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5793-5814, October.
  15. Campisi, Giovanni & Muzzioli, Silvia & De Baets, Bernard, 2024. "A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices," International Journal of Forecasting, Elsevier, vol. 40(3), pages 869-880.
  16. Li, Jinfang, 2014. "Multi-period sentiment asset pricing model with information," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 118-130.
  17. Giovanni Campisi & Silvia Muzzioli, 2021. "Designing volatility indices for Austria, Finland and Spain," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 369-455, September.
  18. Liang, Hanchao & Yang, Chunpeng & Cai, Chuangqun, 2017. "Beauty contest, bounded rationality, and sentiment pricing dynamics," Economic Modelling, Elsevier, vol. 60(C), pages 71-80.
  19. Le, Trung H., 2021. "International portfolio allocation: The role of conditional higher moments," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 33-57.
  20. Corredor, Pilar & Ferrer, Elena & Santamaria, Rafael, 2013. "Investor sentiment effect in stock markets: Stock characteristics or country-specific factors?," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 572-591.
  21. Trung H. Le, 2024. "Forecasting VaR and ES in emerging markets: The role of time‐varying higher moments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 402-414, March.
  22. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
  23. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
  24. Yaw‐Huei Wang & Kuang‐Chieh Yen, 2019. "The information content of the implied volatility term structure on future returns," European Financial Management, European Financial Management Association, vol. 25(2), pages 380-406, March.
  25. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
  26. Chen, Shun & Ge, Lei, 2021. "A learning-based strategy for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 936-942.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.