IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v81y2018ip1p1-21.html
   My bibliography  Save this item

Membrane technology in renewable-energy-driven desalination

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2021. "Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration," Energies, MDPI, vol. 14(13), pages 1-20, June.
  2. Mujeeb Iqbal Soomro & Sanjay Kumar & Asad Ullah & Muhammad Ali Shar & Abdulaziz Alhazaa, 2022. "Solar-Powered Direct Contact Membrane Distillation System: Performance and Water Cost Evaluation," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
  3. Kasaeian, Alibakhsh & Rajaee, Fatemeh & Yan, Wei-Mon, 2019. "Osmotic desalination by solar energy: A critical review," Renewable Energy, Elsevier, vol. 134(C), pages 1473-1490.
  4. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  5. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  6. Ahmadi, Esmaeil & McLellan, Benjamin & Tezuka, Tetsuo, 2020. "The economic synergies of modelling the renewable energy-water nexus towards sustainability," Renewable Energy, Elsevier, vol. 162(C), pages 1347-1366.
  7. Schallenberg-Rodríguez, Julieta & Del Rio-Gamero, Beatriz & Melian-Martel, Noemi & Lis Alecio, Tyrone & González Herrera, Javier, 2020. "Energy supply of a large size desalination plant using wave energy. Practical case: North of Gran Canaria," Applied Energy, Elsevier, vol. 278(C).
  8. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
  9. Mudhar A. Al-Obaidi & Rana H. A. Zubo & Farhan Lafta Rashid & Hassan J. Dakkama & Raed Abd-Alhameed & Iqbal M. Mujtaba, 2022. "Evaluation of Solar Energy Powered Seawater Desalination Processes: A Review," Energies, MDPI, vol. 15(18), pages 1-16, September.
  10. Li, Sheying & Cai, Yang-Hui & Schäfer, Andrea I. & Richards, Bryce S., 2019. "Renewable energy powered membrane technology: A review of the reliability of photovoltaic-powered membrane system components for brackish water desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  11. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
  12. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
  13. Baker, T.E. & Epiney, A.S. & Rabiti, C. & Shittu, E., 2018. "Optimal sizing of flexible nuclear hybrid energy system components considering wind volatility," Applied Energy, Elsevier, vol. 212(C), pages 498-508.
  14. Soomro, Mujeeb Iqbal & Kim, Woo-Seung, 2018. "Performance and economic evaluation of linear Fresnel reflector plant integrated direct contact membrane distillation system," Renewable Energy, Elsevier, vol. 129(PA), pages 561-569.
  15. Chen, Man & Mei, Ying & Yu, Yuqing & Zeng, Raymond Jianxiong & Zhang, Fang & Zhou, Shungui & Tang, Chuyang Y., 2019. "An internal-integrated RED/ED system for energy-saving seawater desalination: A model study," Energy, Elsevier, vol. 170(C), pages 139-148.
  16. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2018. "A two-level decision making approach for optimal integrated urban water and energy management," Energy, Elsevier, vol. 155(C), pages 408-425.
  17. Prado de Nicolás, Amanda & Molina-García, Ángel & García-Bermejo, Juan Tomás & Vera-García, Francisco, 2023. "Desalination, minimal and zero liquid discharge powered by renewable energy sources: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  18. Yuanyuan Chen & JungHyun Song, 2023. "The Technological Innovation Efficiency of China’s Renewable Energy Enterprises: An Estimation Based on a Three-Stage DEA Model," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
  19. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
  20. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  21. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
  22. Soukane, Sofiane & Son, Hyuk Soo & Mustakeem, Mustakeem & Obaid, M. & Alpatova, Alla & Qamar, Adnan & Jin, Yong & Ghaffour, Noreddine, 2022. "Materials for energy conversion in membrane distillation localized heating: Review, analysis and future perspectives of a paradigm shift," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  23. Jiao, Yanmei & Yang, Chun & Zhang, Wenyao & Wang, Qiuwang & Zhao, Cunlu, 2024. "A review on direct osmotic power generation: Mechanism and membranes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  24. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
  25. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
  26. Patricia Palenzuela & Marina Micari & Bartolomé Ortega-Delgado & Francesco Giacalone & Guillermo Zaragoza & Diego-César Alarcón-Padilla & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2018. "Performance Analysis of a RED-MED Salinity Gradient Heat Engine," Energies, MDPI, vol. 11(12), pages 1-23, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.