IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v49y2015icp1247-1260.html
   My bibliography  Save this item

Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. John Macaulay & Zhongfu Zhou, 2018. "A Fuzzy Logical-Based Variable Step Size P&O MPPT Algorithm for Photovoltaic System," Energies, MDPI, vol. 11(6), pages 1-15, May.
  2. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
  3. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  4. Nabipour, M. & Razaz, M. & Seifossadat, S.GH & Mortazavi, S.S., 2017. "A new MPPT scheme based on a novel fuzzy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1147-1169.
  5. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  6. Ram, J.Prasanth & Rajasekar, N. & Miyatake, Masafumi, 2017. "Design and overview of maximum power point tracking techniques in wind and solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1138-1159.
  7. Venkateswari, R. & Sreejith, S., 2019. "Factors influencing the efficiency of photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 376-394.
  8. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
  9. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
  10. Das, Soubhagya K. & Verma, Deepak & Nema, Savita & Nema, R.K., 2017. "Shading mitigation techniques: State-of-the-art in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 369-390.
  11. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2017. "The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system," Applied Energy, Elsevier, vol. 204(C), pages 873-886.
  12. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
  13. Messalti, Sabir & Harrag, Abdelghani & Loukriz, Abdelhamid, 2017. "A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 221-233.
  14. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
  15. Hyeon-Seok Lee & Jae-Jung Yun, 2019. "Advanced MPPT Algorithm for Distributed Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-17, September.
  16. Jie Sun & Yuquan Zhang & Bin Liu & Xinfeng Ge & Yuan Zheng & Emmanuel Fernandez-Rodriguez, 2022. "Research on Oil Mist Leakage of Bearing in Hydropower Station: A Review," Energies, MDPI, vol. 15(7), pages 1-24, April.
  17. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
  18. Adeel Feroz Mirza & Majad Mansoor & Qiang Ling & Muhammad Imran Khan & Omar M. Aldossary, 2020. "Advanced Variable Step Size Incremental Conductance MPPT for a Standalone PV System Utilizing a GA-Tuned PID Controller," Energies, MDPI, vol. 13(16), pages 1-25, August.
  19. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
  20. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
  21. Bahrami, Milad & Gavagsaz-Ghoachani, Roghayeh & Zandi, Majid & Phattanasak, Matheepot & Maranzanaa, Gaël & Nahid-Mobarakeh, Babak & Pierfederici, Serge & Meibody-Tabar, Farid, 2019. "Hybrid maximum power point tracking algorithm with improved dynamic performance," Renewable Energy, Elsevier, vol. 130(C), pages 982-991.
  22. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
  23. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
  24. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
  25. Slimane Hadji & Jean-Paul Gaubert & Fateh Krim, 2018. "Real-Time Genetic Algorithms-Based MPPT: Study and Comparison (Theoretical an Experimental) with Conventional Methods," Energies, MDPI, vol. 11(2), pages 1-17, February.
  26. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.