IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v23y2013icp536-542.html
   My bibliography  Save this item

Low carbon and low embodied energy materials in buildings: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
  2. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
  3. Dahl Winters & Kwaku Boakye & Steven Simske, 2022. "Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
  4. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
  5. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
  6. Ghasan Fahim Huseien & Kwok Wei Shah, 2021. "Potential Applications of 5G Network Technology for Climate Change Control: A Scoping Review of Singapore," Sustainability, MDPI, vol. 13(17), pages 1-26, August.
  7. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
  8. Sehee Han & Seunguk Na & Nam-Gi Lim, 2020. "Evaluation of Road Transport Pollutant Emissions from Transporting Building Materials to the Construction Site by Replacing Old Vehicles," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
  9. Zandifaez, Peyman & Nezhad, Ali Akbar & Zhou, Hongyu & Dias-da-Costa, D., 2024. "A systematic review on energy-efficient concrete: Indicators, performance metrics, strategies, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
  10. Raghunathan Krishankumar & Arunodaya Raj Mishra & Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Jurgita Antuchevičienė & Kattur Soundarapandian Ravichandran, 2022. "A New Approach to the Viable Ranking of Zero-Carbon Construction Materials with Generalized Fuzzy Information," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
  11. Liu, Miaomiao & Nejat, Payam & Cao, Pinlu & Jimenez-Bescos, Carlos & Calautit, John Kaiser, 2024. "A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  12. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
  13. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  14. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
  15. Miró, Laia & Oró, Eduard & Boer, Dieter & Cabeza, Luisa F., 2015. "Embodied energy in thermal energy storage (TES) systems for high temperature applications," Applied Energy, Elsevier, vol. 137(C), pages 793-799.
  16. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
  17. Vivian W. Y. Tam & Khoa N. Le & J. Y. Wang, 2018. "Cost Implication of Implementing External Facade Systems for Commercial Buildings," Sustainability, MDPI, vol. 10(6), pages 1-22, June.
  18. Shi, Qian & Yu, Tao & Zuo, Jian, 2015. "What leads to low-carbon buildings? A China study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 726-734.
  19. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
  20. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
  21. Ming Hu, 2020. "A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact," Energies, MDPI, vol. 13(8), pages 1-17, April.
  22. Mohammad Masfiqul Alam Bhuiyan & Ahmed Hammad, 2024. "Engineering and Design for Sustainable Construction: A Bibliometric Analysis of Current Status and Future Trends," Sustainability, MDPI, vol. 16(7), pages 1-26, April.
  23. Eeva-Sofia Säynäjoki & Pia Korba & Elina Kalliala & Aino-Kaisa Nuotio, 2018. "GHG Emissions Reduction through Urban Planners’ Improved Control over Earthworks: A Case Study in Finland," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
  24. Chen, Jiayu & Qiu, Qiwen & Han, Yilong & Lau, Denvid, 2019. "Piezoelectric materials for sustainable building structures: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 14-25.
  25. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  26. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  27. Yoorae Noh & Shahryar Jafarinejad & Prashant Anand, 2024. "A Review on Harnessing Renewable Energy Synergies for Achieving Urban Net-Zero Energy Buildings: Technologies, Performance Evaluation, Policies, Challenges, and Future Direction," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
  28. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  29. Roh, Seungjun & Tae, Sungho & Suk, Sung Joon & Ford, George, 2017. "Evaluating the embodied environmental impacts of major building tasks and materials of apartment buildings in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 135-144.
  30. Kyriakidis, A. & Michael, A. & Illampas, R. & Charmpis, D.C. & Ioannou, I., 2019. "Comparative evaluation of a novel environmentally responsive modular wall system based on integrated quantitative and qualitative criteria," Energy, Elsevier, vol. 188(C).
  31. Seo, Seongwon & Kim, Junbeum & Yum, Kwok-Keung & McGregor, James, 2015. "Embodied carbon of building products during their supply chains: Case study of aluminium window in Australia," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 160-166.
  32. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.