My bibliography
Save this item
Assessing the sustainability of the UK society using thermodynamic concepts: Part 2
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Xiuhong & Shen, Jianxiu & Zhang, Wei, 2014. "Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy," Energy Policy, Elsevier, vol. 67(C), pages 508-516.
- Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
- Pere Ariza-Montobbio & Katharine Farrell & Gonzalo Gamboa & Jesus Ramos-Martin, 2014. "Integrating energy and land-use planning: socio-metabolic profiles along the rural–urban continuum in Catalonia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(4), pages 925-956, August.
- Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "ExRET-Opt: An automated exergy/exergoeconomic simulation framework for building energy retrofit analysis and design optimisation," Applied Energy, Elsevier, vol. 192(C), pages 33-58.
- Giannetti, B.F. & Almeida, C.M.V.B. & Bonilla, S.H., 2010. "Comparing emergy accounting with well-known sustainability metrics: The case of Southern Cone Common Market, Mercosur," Energy Policy, Elsevier, vol. 38(7), pages 3518-3526, July.
- García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
- Nancy Arizpe & Jesus Ramos-Martin & Mario Giampietro, 2012. "An analysis of the metabolic patterns of two rural communities affected by soy expansion in the North of Argentina," UHE Working papers 2012_06, Universitat Autònoma de Barcelona, Departament d'Economia i Història Econòmica, Unitat d'Història Econòmica.
- Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
- Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
- Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
- Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
- Ramos-Martín, Jesús & Cañellas-Boltà, Sílvia & Giampietro, Mario & Gamboa, Gonzalo, 2009. "Catalonia's energy metabolism: Using the MuSIASEM approach at different scales," Energy Policy, Elsevier, vol. 37(11), pages 4658-4671, November.
- García Kerdan, Iván & Morillón Gálvez, David & Raslan, Rokia & Ruyssevelt, Paul, 2015. "Modelling the energy and exergy utilisation of the Mexican non-domestic sector: A study by climatic regions," Energy Policy, Elsevier, vol. 77(C), pages 191-206.
- Talens Peiró, L. & Villalba Méndez, G. & Sciubba, E. & Gabarrell i Durany, X., 2010. "Extended exergy accounting applied to biodiesel production," Energy, Elsevier, vol. 35(7), pages 2861-2869.
- Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
- Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
- Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
- Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
- Kharrazi, Ali & Rovenskaya, Elena & Fath, Brian D. & Yarime, Masaru & Kraines, Steven, 2013. "Quantifying the sustainability of economic resource networks: An ecological information-based approach," Ecological Economics, Elsevier, vol. 90(C), pages 177-186.
- Hai Qi & Haizhong An & Xiaoqing Hao & Weiqiong Zhong & Yanbing Zhang, 2014. "Analyzing the International Exergy Flow Network of Ferrous Metal Ores," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-16, September.
- Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
- Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
- Borzoni, Matteo, 2011. "Multi-scale integrated assessment of soybean biodiesel in Brazil," Ecological Economics, Elsevier, vol. 70(11), pages 2028-2038, September.
- Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
- Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
- Zhang, Bo & Chen, G.Q., 2014. "Methane emissions in China 2007," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 886-902.
- Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
- Prince, & Hati, Ananda Shankar & Kumar, Prashant, 2023. "An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system," Applied Energy, Elsevier, vol. 337(C).
- Bo Zhang & Suping Peng & Xiangyang Xu & Lijie Wang, 2011. "Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials," Energies, MDPI, vol. 4(11), pages 1-19, November.
- Nathalia Tejedor-Flores & Purificación Vicente-Galindo & Purificación Galindo-Villardón, 2017. "Sustainability Multivariate Analysis of the Energy Consumption of Ecuador Using MuSIASEM and BIPLOT Approach," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul, 2016. "An exergy-based multi-objective optimisation model for energy retrofit strategies in non-domestic buildings," Energy, Elsevier, vol. 117(P2), pages 506-522.
- Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
- García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "The role of an exergy-based building stock model for exploration of future decarbonisation scenarios and policy making," Energy Policy, Elsevier, vol. 105(C), pages 467-483.