IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v97y2016icp599-610.html
   My bibliography  Save this item

Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
  2. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
  3. Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
  4. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
  5. Niu, Yinsen & Song, Jifeng & Zou, Lianglin & Yan, Zixuan & Lin, Xilong, 2024. "Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold," Renewable Energy, Elsevier, vol. 226(C).
  6. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
  7. Majid Hosseini & Satya Katragadda & Jessica Wojtkiewicz & Raju Gottumukkala & Anthony Maida & Terrence Lynn Chambers, 2020. "Direct Normal Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 13(15), pages 1-15, July.
  8. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
  9. Eduardo Rangel-Heras & César Angeles-Camacho & Erasmo Cadenas-Calderón & Rafael Campos-Amezcua, 2022. "Short-Term Forecasting of Energy Production for a Photovoltaic System Using a NARX-CVM Hybrid Model," Energies, MDPI, vol. 15(8), pages 1-23, April.
  10. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
  11. Zhao, Shuting & Wu, Lifeng & Xiang, Youzhen & Dong, Jianhua & Li, Zhen & Liu, Xiaoqiang & Tang, Zijun & Wang, Han & Wang, Xin & An, Jiaqi & Zhang, Fucang & Li, Zhijun, 2022. "Coupling meteorological stations data and satellite data for prediction of global solar radiation with machine learning models," Renewable Energy, Elsevier, vol. 198(C), pages 1049-1064.
  12. Liu, Hongda & Li, Lun & Han, Yang & Lu, Fang, 2019. "Method of identifying the lengths of equivalent clear-sky periods in the time series of DNI measurements based on generalized atmospheric turbidity," Renewable Energy, Elsevier, vol. 136(C), pages 179-192.
  13. Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
  14. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
  15. Singh Doorga, Jay Rovisham & Dhurmea, Kumar Ram & Rughooputh, Soonil & Boojhawon, Ravindra, 2019. "Forecasting mesoscale distribution of surface solar irradiation using a proposed hybrid approach combining satellite remote sensing and time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 69-85.
  16. Reikard, Gordon & Hansen, Clifford, 2019. "Forecasting solar irradiance at short horizons: Frequency and time domain models," Renewable Energy, Elsevier, vol. 135(C), pages 1270-1290.
  17. Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
  18. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
  19. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
  20. Ricardo Aler & Javier Huertas-Tato & José M. Valls & Inés M. Galván, 2019. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach," Energies, MDPI, vol. 12(24), pages 1-19, December.
  21. Bikhtiyar Ameen & Heiko Balzter & Claire Jarvis & James Wheeler, 2019. "Modelling Hourly Global Horizontal Irradiance from Satellite-Derived Datasets and Climate Variables as New Inputs with Artificial Neural Networks," Energies, MDPI, vol. 12(1), pages 1-28, January.
  22. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  23. Alonso-Montesinos, J. & Polo, Jesús & Ballestrín, Jesús & Batlles, F.J. & Portillo, C., 2019. "Impact of DNI forecasting on CSP tower plant power production," Renewable Energy, Elsevier, vol. 138(C), pages 368-377.
  24. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
  25. Eduardo Rangel & Erasmo Cadenas & Rafael Campos-Amezcua & Jorge L. Tena, 2020. "Enhanced Prediction of Solar Radiation Using NARX Models with Corrected Input Vectors," Energies, MDPI, vol. 13(10), pages 1-22, May.
  26. Armando Castillejo-Cuberos & John Boland & Rodrigo Escobar, 2021. "Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach," Energies, MDPI, vol. 14(18), pages 1-24, September.
  27. Francis M. Lopes & Ricardo Conceição & Hugo G. Silva & Thomas Fasquelle & Rui Salgado & Paulo Canhoto & Manuel Collares-Pereira, 2019. "Short-Term Forecasts of DNI from an Integrated Forecasting System (ECMWF) for Optimized Operational Strategies of a Central Receiver System," Energies, MDPI, vol. 12(7), pages 1-18, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.