IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v87y2016ip1p686-696.html
   My bibliography  Save this item

Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
  2. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
  3. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
  4. Caroline De Oliveira Costa Souza Rosa & Kelly Alonso Costa & Eliane Da Silva Christo & Pâmela Braga Bertahone, 2017. "Complementarity of Hydro, Photovoltaic, and Wind Power in Rio de Janeiro State," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
  5. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
  6. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
  7. François, B., 2016. "Influence of winter North-Atlantic Oscillation on Climate-Related-Energy penetration in Europe," Renewable Energy, Elsevier, vol. 99(C), pages 602-613.
  8. Baptiste François & Sara Martino & Lena S. Tøfte & Benoit Hingray & Birger Mo & Jean-Dominique Creutin, 2017. "Effects of Increased Wind Power Generation on Mid-Norway’s Energy Balance under Climate Change: A Market Based Approach," Energies, MDPI, vol. 10(2), pages 1-18, February.
  9. François, B. & Puspitarini, H.D. & Volpi, E. & Borga, M., 2022. "Statistical analysis of electricity supply deficits from renewable energy sources across an Alpine transect," Renewable Energy, Elsevier, vol. 201(P1), pages 1200-1212.
  10. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
  11. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
  12. Roy, Sanjoy, 2019. "Run-of-river hydro generation in presence of sub-daily source flow variations," Energy, Elsevier, vol. 172(C), pages 1268-1276.
  13. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhou, Yanlai & Gao, Shida & Li, He, 2018. "Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1341-1352.
  14. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
  15. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "Are emission reduction policies effective under climate change conditions? A backcasting and exploratory scenario approach using the LEAP-OSeMOSYS Model," Applied Energy, Elsevier, vol. 236(C), pages 1183-1217.
  16. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
  17. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
  18. Chattopadhyay, Kabitri & Kies, Alexander & Lorenz, Elke & von Bremen, Lüder & Heinemann, Detlev, 2017. "The impact of different PV module configurations on storage and additional balancing needs for a fully renewable European power system," Renewable Energy, Elsevier, vol. 113(C), pages 176-189.
  19. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.
  20. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
  21. Pfeiffer, Olivia & Nock, Destenie & Baker, Erin, 2021. "Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  22. Alshawaf, Mohammad & Poudineh, Rahmatallah & Alhajeri, Nawaf S., 2020. "Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  23. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Shen, Jianjian & Wu, Xinyu & Su, Huaying, 2022. "Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China," Energy, Elsevier, vol. 260(C).
  24. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
  25. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
  26. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  27. Xianxun Wang & Lihua Chen & Qijuan Chen & Yadong Mei & Hao Wang, 2018. "Model and Analysis of Integrating Wind and PV Power in Remote and Core Areas with Small Hydropower and Pumped Hydropower Storage," Energies, MDPI, vol. 11(12), pages 1-24, December.
  28. François, B. & Zoccatelli, D. & Borga, M., 2017. "Assessing small hydro/solar power complementarity in ungauged mountainous areas: A crash test study for hydrological prediction methods," Energy, Elsevier, vol. 127(C), pages 716-729.
  29. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
  30. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
  31. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
  32. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "Optimal mix of climate-related energy in global electricity systems," Renewable Energy, Elsevier, vol. 160(C), pages 955-963.
  33. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.