IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v48y2012icp524-536.html
   My bibliography  Save this item

Urban energy systems with smart multi-carrier energy networks and renewable energy generation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
  2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
  3. Rinne, S. & Syri, S., 2015. "The possibilities of combined heat and power production balancing large amounts of wind power in Finland," Energy, Elsevier, vol. 82(C), pages 1034-1046.
  4. Zakeri, Behnam & Syri, Sanna & Rinne, Samuli, 2015. "Higher renewable energy integration into the existing energy system of Finland – Is there any maximum limit?," Energy, Elsevier, vol. 92(P3), pages 244-259.
  5. Nils Korber & Maximilian Rohrig & Andreas Ulbig, 2022. "A stakeholder-oriented multi-criteria optimization model for decentral multi-energy systems," Papers 2204.06545, arXiv.org.
  6. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
  7. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
  8. Nolting, Lars & Praktiknjo, Aaron, 2019. "Techno-economic analysis of flexible heat pump controls," Applied Energy, Elsevier, vol. 238(C), pages 1417-1433.
  9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
  10. van Stiphout, Arne & Virag, Ana & Kessels, Kris & Deconinck, Geert, 2018. "Benefits of a multi-energy day-ahead market," Energy, Elsevier, vol. 165(PB), pages 651-661.
  11. George Xydis, 2015. "Wind Energy Integration through District Heating. A Wind Resource Based Approach," Resources, MDPI, vol. 4(1), pages 1-18, March.
  12. Arsovski Slobodan & Kwiatkowski Michał & Lewandowska Aleksandra & Peshevska Dimitrinka Jordanova & Sofeska Emilija & Dymitrow Mirek, 2018. "Can urban environmental problems be overcome? The case of Skopje–world’s most polluted city," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 40(40), pages 17-39, June.
  13. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
  14. Da Xie & Yupu Lu & Junbo Sun & Chenghong Gu & Jilai Yu, 2016. "Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization," Energies, MDPI, vol. 9(6), pages 1-17, June.
  15. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
  16. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
  17. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
  18. Raluca Suciu & Paul Stadler & Ivan Kantor & Luc Girardin & François Maréchal, 2019. "Systematic Integration of Energy-Optimal Buildings With District Networks," Energies, MDPI, vol. 12(15), pages 1-38, July.
  19. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
  20. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.
  21. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
  22. Wei Wei & Yaping Shi & Kai Hou & Lei Guo & Linyu Wang & Hongjie Jia & Jianzhong Wu & Chong Tong, 2020. "Coordinated Flexibility Scheduling for Urban Integrated Heat and Power Systems by Considering the Temperature Dynamics of Heating Network," Energies, MDPI, vol. 13(12), pages 1-23, June.
  23. Farahani, Samira S. & Bleeker, Cliff & van Wijk, Ad & Lukszo, Zofia, 2020. "Hydrogen-based integrated energy and mobility system for a real-life office environment," Applied Energy, Elsevier, vol. 264(C).
  24. Miguel Amado & Francesca Poggi & António Ribeiro Amado & Sílvia Breu, 2017. "A Cellular Approach to Net-Zero Energy Cities," Energies, MDPI, vol. 10(11), pages 1-17, November.
  25. Javad Estakhr & Mohsen Simab & Taher Niknam, 2021. "Security Analysis of Hybrid Multi-Carrier Energy Systems," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
  26. Yang, Hongming & Xiong, Tonglin & Qiu, Jing & Qiu, Duo & Dong, Zhao Yang, 2016. "Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response," Applied Energy, Elsevier, vol. 167(C), pages 353-365.
  27. Kachirayil, Febin & Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2022. "Reviewing local and integrated energy system models: insights into flexibility and robustness challenges," Applied Energy, Elsevier, vol. 324(C).
  28. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
  29. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Mur-Pérez, Francisco & López-Rey, África, 2014. "Integration of distributed generation in the power distribution network: The need for smart grid control systems, communication and equipment for a smart city — Use cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 223-234.
  30. Jasiūnas, Justinas & Lund, Peter D. & Mikkola, Jani & Koskela, Liinu, 2021. "Linking socio-economic aspects to power system disruption models," Energy, Elsevier, vol. 222(C).
  31. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
  32. Hwang, Haejin & Kim, Sunghoon & García, Álvaro González & Kim, Jiyong, 2021. "Global sensitivity analysis for assessing the economic feasibility of renewable energy systems for an off-grid electrified city," Energy, Elsevier, vol. 216(C).
  33. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  34. Patrycjusz Zarębski & Dominik Katarzyński, 2023. "A Theoretical Framework for a Local Energy Innovation System Based on the Renewable Energy Case of Poland," Energies, MDPI, vol. 16(9), pages 1-24, April.
  35. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
  36. Naoya Nagano & Rémi Delage & Toshihiko Nakata, 2021. "Optimal Design and Analysis of Sector-Coupled Energy System in Northeast Japan," Energies, MDPI, vol. 14(10), pages 1-26, May.
  37. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
  38. Robert Olszewski & Piotr Pałka & Agnieszka Wendland & Jacek Kamiński, 2019. "A Multi-Agent Social Gamification Model to Guide Sustainable Urban Photovoltaic Panels Installation Policies," Energies, MDPI, vol. 12(15), pages 1-27, August.
  39. van der Roest, Els & Snip, Laura & Fens, Theo & van Wijk, Ad, 2020. "Introducing Power-to-H3: Combining renewable electricity with heat, water and hydrogen production and storage in a neighbourhood," Applied Energy, Elsevier, vol. 257(C).
  40. Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.