IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v41y2012icp200-209.html
   My bibliography  Save this item

Biogas prediction and design of a food waste to energy system for the urban environment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Barbara Ribeiro & James A. Turner, 2021. "Sustainability Buckets: A Flexible Heuristic for Facilitating Strategic Investment on Place-Dependent Sustainability Narratives," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
  2. Eftychia Ntostoglou & Dilip Khatiwada & Viktoria Martin, 2021. "The Potential Contribution of Decentralized Anaerobic Digestion towards Urban Biowaste Recovery Systems: A Scoping Review," Sustainability, MDPI, vol. 13(23), pages 1-21, December.
  3. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
  4. Lyu, Zhengwei & Lan, Hongjie & Hua, Guowei & Cheng, T.C.E. & Xu, Yadong, 2024. "How to promote Chinese food waste-to-energy program? An evolutionary game approach," Energy, Elsevier, vol. 293(C).
  5. Baruah, Abhinandan & Basu, Mousumi & Amuley, Deeshank, 2021. "Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  6. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
  7. Zhang, Binyue & Chen, Bin, 2017. "Sustainability accounting of a household biogas project based on emergy," Applied Energy, Elsevier, vol. 194(C), pages 819-831.
  8. De Clercq, Djavan & Wen, Zongguo & Fan, Fei & Caicedo, Luis, 2016. "Biomethane production potential from restaurant food waste in megacities and project level-bottlenecks: A case study in Beijing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1676-1685.
  9. Sahu, Nidhi & Sharma, Ganesh & Chandrashekhar, B. & Jadeja, Niti B. & Kapley, Atya & Pandey, R.A. & Sharma, Abhinav, 2019. "Performance evaluation of methanogenic digester using kitchen waste for validation of optimized hydrolysis conditions for reduction in ammonia accumulation," Renewable Energy, Elsevier, vol. 139(C), pages 110-119.
  10. Herlander Mata-Lima & Deborah Wollmann Silva & Deborah Cristina Nardi & Samanta Andrize Klering & Thays Car Feliciano de Oliveira & Fernando Morgado-Dias, 2021. "Waste-to-Energy: An Opportunity to Increase Renewable Energy Share and Reduce Ecological Footprint in Small Island Developing States (SIDS)," Energies, MDPI, vol. 14(22), pages 1-20, November.
  11. Gutierrez, Enrique Chan & Xia, Ao & Murphy, Jerry D., 2016. "Can slurry biogas systems be cost effective without subsidy in Mexico?," Renewable Energy, Elsevier, vol. 95(C), pages 22-30.
  12. Montecchio, D. & Braguglia, C.M. & Gallipoli, A. & Gianico, A., 2017. "A model-based tool for reactor configuration of thermophilic biogas plants fed with Waste Activated Sludge," Renewable Energy, Elsevier, vol. 113(C), pages 411-419.
  13. Joshi, Kapil & Sharma, Vinay & Mittal, Sukrit, 2015. "Social entrepreneurship through forest bioresidue briquetting: An approach to mitigate forest fires in Pine areas of Western Himalaya, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1338-1344.
  14. Sen, Biswarup & Aravind, J. & Kanmani, P. & Lay, Chyi-How, 2016. "State of the art and future concept of food waste fermentation to bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 547-557.
  15. Tozlu, Alperen & Özahi, Emrah & Abuşoğlu, Ayşegül, 2016. "Waste to energy technologies for municipal solid waste management in Gaziantep," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 809-815.
  16. Zhao, Ning & You, Fengqi, 2021. "Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns," Applied Energy, Elsevier, vol. 282(PA).
  17. Can, Ali, 2022. "Investigation of provincial capacity to produce biogas from waste disposal sites in Turkey," Energy, Elsevier, vol. 258(C).
  18. Kimberley E. Miller & Tess Herman & Dimas A. Philipinanto & Sarah C. Davis, 2021. "Anaerobic Digestion of Food Waste, Brewery Waste, and Agricultural Residues in an Off-Grid Continuous Reactor," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
  19. Rayner, Addison J. & Briggs, Johnathan & Tremback, Reed & Clemmer, Ryan M.C., 2017. "Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 563-571.
  20. Bharathiraja, B. & Sudharsana, T. & Jayamuthunagai, J. & Praveenkumar, R. & Chozhavendhan, S. & Iyyappan, J., 2018. "Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 570-582.
  21. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
  22. Bajić, Bojana Ž. & Dodić, Siniša N. & Vučurović, Damjan G. & Dodić, Jelena M. & Grahovac, Jovana A., 2015. "Waste-to-energy status in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1437-1444.
  23. Rehan, Mohammad & Amir Raza, Muhammad & Ghani Abro, Abdul & M Aman, M. & Mohammad Ibrahim Ismail, Iqbal & Sattar Nizami, Abdul & Imtiaz Rashid, Muhammad & Summan, Ahmed & Shahzad, Khurram & Ali, Nadee, 2023. "A sustainable use of biomass for electrical energy harvesting using distributed generation systems," Energy, Elsevier, vol. 278(PB).
  24. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  25. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
  26. Li, Demao & Tang, Ruohao & Yu, Liang & Chen, Limei & Chen, Shulin & Xu, Song & Gao, Feng, 2020. "Effects of increasing organic loading rates on reactor performance and the methanogenic community in a new pilot upflow solid reactor for continuously processing food waste," Renewable Energy, Elsevier, vol. 153(C), pages 420-429.
  27. Kalyani, Khanjan Ajaybhai & Pandey, Krishan K., 2014. "Waste to energy status in India: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 113-120.
  28. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
  29. Jasmina Locke & Jacinta Dsilva & Saniya Zarmukhambetova, 2023. "Decarbonization Strategies in the UAE Built Environment: An Evidence-Based Analysis Using COP26 and COP27 Recommendations," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.