My bibliography
Save this item
Overall design optimization of wind farms
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cazzaro, Davide & Koza, David Franz & Pisinger, David, 2023. "Combined layout and cable optimization of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 311(1), pages 301-315.
- Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
- Wu, Yunna & Li, Yang & Ba, Xi & Wang, Heping, 2013. "Post-evaluation indicator framework for wind farm planning in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 26-34.
- Serrano González, J. & Burgos Payán, M. & Riquelme Santos, J., 2013. "Optimum design of transmissions systems for offshore wind farms including decision making under risk," Renewable Energy, Elsevier, vol. 59(C), pages 115-127.
- Guirguis, David & Romero, David A. & Amon, Cristina H., 2016. "Toward efficient optimization of wind farm layouts: Utilizing exact gradient information," Applied Energy, Elsevier, vol. 179(C), pages 110-123.
- Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús & González Rodríguez, Ángel Gaspar, 2015. "Maximizing the overall production of wind farms by setting the individual operating point of wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 219-229.
- Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
- Klinge Jacobsen, Henrik & Hevia-Koch, Pablo & Wolter, Christoph, 2018. "Costs and competitive advantage of nearshore wind energy," MPRA Paper 92869, University Library of Munich, Germany.
- Serrano González, Javier & Burgos Payán, Manuel & Riquelme Santos, Jesús Manuel, 2018. "Optimal design of neighbouring offshore wind farms: A co-evolutionary approach," Applied Energy, Elsevier, vol. 209(C), pages 140-152.
- Wang, Longyan & Tan, Andy & Gu, Yuantong, 2016. "A novel control strategy approach to optimally design a wind farm layout," Renewable Energy, Elsevier, vol. 95(C), pages 10-21.
- Froese, Gabrielle & Ku, Shan Yu & Kheirabadi, Ali C. & Nagamune, Ryozo, 2022. "Optimal layout design of floating offshore wind farms," Renewable Energy, Elsevier, vol. 190(C), pages 94-102.
- Aguayo, Maichel M. & Fierro, Pablo E. & De la Fuente, Rodrigo A. & Sepúlveda, Ignacio A. & Figueroa, Dante M., 2021. "A mixed-integer programming methodology to design tidal current farms integrating both cost and benefits: A case study in the Chacao Channel, Chile," Applied Energy, Elsevier, vol. 294(C).
- Thorsten Reichartz & Georg Jacobs & Lucas Blickwedel & Dustin Frings & Ralf Schelenz, 2024. "Co-Design of a Wind–Hydrogen System: The Effect of Varying Wind Turbine Types on Techno-Economic Parameters," Energies, MDPI, vol. 17(18), pages 1-17, September.
- Long Wang & Jianghai Wu & Zeling Tang & Tongguang Wang, 2019. "An Integration Optimization Method for Power Collection Systems of Offshore Wind Farms," Energies, MDPI, vol. 12(20), pages 1-16, October.
- Wang, Long & Wu, Jianghai & Wang, Tongguang & Han, Ran, 2020. "An optimization method based on random fork tree coding for the electrical networks of offshore wind farms," Renewable Energy, Elsevier, vol. 147(P1), pages 1340-1351.
- Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
- Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
- Wędzik, Andrzej & Siewierski, Tomasz & Szypowski, Michał, 2016. "A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization," Applied Energy, Elsevier, vol. 182(C), pages 525-538.
- McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
- Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
- Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
- Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
- Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
- Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
- Oner, Yasemin & Ozcira, Selin & Bekiroglu, Nur & Senol, Ibrahim, 2013. "A comparative analysis of wind power density prediction methods for Çanakkale, Intepe region, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 491-502.
- Joanna Wyrobek & Łukasz Popławski & Maria Dzikuć, 2021. "Analysis of Financial Problems of Wind Farms in Poland," Energies, MDPI, vol. 14(5), pages 1-28, February.
- Mohamed Zaidan Qawaqzeh & Oleksandr Miroshnyk & Taras Shchur & Robert Kasner & Adam Idzikowski & Weronika Kruszelnicka & Andrzej Tomporowski & Patrycja Bałdowska-Witos & Józef Flizikowski & Marcin Zaw, 2021. "Research of Emergency Modes of Wind Power Plants Using Computer Simulation," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
- Song, M.X. & Chen, K. & Zhang, X. & Wang, J., 2015. "The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain," Energy, Elsevier, vol. 80(C), pages 567-574.
- Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
- Huthaifa A. Al_Issa & Mohamed Qawaqzeh & Alaa Khasawneh & Roman Buinyi & Viacheslav Bezruchko & Oleksandr Miroshnyk, 2021. "Correct Cross-Section of Cable Screen in a Medium Voltage Collector Network with Isolated Neutral of a Wind Power Plant," Energies, MDPI, vol. 14(11), pages 1-14, May.
- Bains, Henna & Madariaga, Ander & Troffaes, Matthias C.M. & Kazemtabrizi, Behzad, 2020. "An economic model for offshore transmission asset planning under severe uncertainty," Renewable Energy, Elsevier, vol. 160(C), pages 1174-1184.
- Gonzalez-Rodriguez, Angel G. & Burgos-Payan, Manuel & Riquelme-Santos, Jesus & Serrano-Gonzalez, Javier, 2015. "Reducing computational effort in the calculation of annual energy produced in wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 656-665.
- Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.