IDEAS home Printed from https://ideas.repec.org/r/eee/proeco/v93-94y2005i1p479-491.html
   My bibliography  Save this item

The impact of aggregation level on forecasting performance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
  2. Michael R. Johnson & Hiten Naik & Wei Siang Chan & Jesse Greiner & Matt Michaleski & Dong Liu & Bruno Silvestre & Ian P. McCarthy, 2023. "Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions," Health Care Management Science, Springer, vol. 26(3), pages 477-500, September.
  3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
  4. Florian Dandl & Michael Hyland & Klaus Bogenberger & Hani S. Mahmassani, 2019. "Evaluating the impact of spatio-temporal demand forecast aggregation on the operational performance of shared autonomous mobility fleets," Transportation, Springer, vol. 46(6), pages 1975-1996, December.
  5. Wolters, Jannik & Huchzermeier, Arnd, 2021. "Joint In-Season and Out-of-Season Promotion Demand Forecasting in a Retail Environment," Journal of Retailing, Elsevier, vol. 97(4), pages 726-745.
  6. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
  7. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
  8. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "A model for selecting the appropriate level of aggregation in forecasting processes," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 74-83, July.
  9. Franck Marle & Hadi Jaber & Catherine Pointurier, 2019. "Organizing Project Actors for Collective Decision-Making about Interdependent Risks," Complexity, Hindawi, vol. 2019, pages 1-18, March.
  10. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
  11. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael, 2014. "Collaborative forecasting in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 158(C), pages 120-135.
  12. Chen, Argon & Blue, Jakey, 2010. "Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands," International Journal of Production Economics, Elsevier, vol. 128(2), pages 586-602, December.
  13. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
  14. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
  15. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
  16. Madhavi Latha Challa & Venkataramanaiah Malepati & Siva Nageswara Rao Kolusu, 2020. "S&P BSE Sensex and S&P BSE IT return forecasting using ARIMA," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-19, December.
  17. Chang, Suk-Gwon, 2015. "A structured scenario approach to multi-screen ecosystem forecasting in Korean communications market," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 1-20.
  18. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
  19. Shin-Lian Lo & Fu-Kwun Wang & James T. Lin, 2008. "Forecasting for the LCD monitor market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 341-356.
  20. Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
  21. Haberleitner, Helmut & Meyr, Herbert & Taudes, Alfred, 2010. "Implementation of a demand planning system using advance order information," International Journal of Production Economics, Elsevier, vol. 128(2), pages 518-526, December.
  22. Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
  23. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
  24. Sali, Mustapha & Ghrab, Yahya & Chatras, Clément, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," International Journal of Production Economics, Elsevier, vol. 263(C).
  25. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
  26. Marle, Franck & Vidal, Ludovic-Alexandre & Bocquet, Jean-Claude, 2013. "Interactions-based risk clustering methodologies and algorithms for complex project management," International Journal of Production Economics, Elsevier, vol. 142(2), pages 225-234.
  27. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
  28. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
  29. Arunraj, Nari Sivanandam & Ahrens, Diane, 2015. "A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 321-335.
  30. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
  31. Zotteri, Giulio & Kalchschmidt, Matteo, 2007. "Forecasting practices: Empirical evidence and a framework for research," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 84-99, July.
  32. Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
  33. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael & Önkal, Dilek, 2019. "Judgmental adjustments through supply integration for strategic partnerships in food chains," Omega, Elsevier, vol. 87(C), pages 20-33.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.