IDEAS home Printed from https://ideas.repec.org/r/eee/matsoc/v17y1989i3p297-313.html
   My bibliography  Save this item

On the existence of utility functions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hiroki Nishimura & Efe A. Ok & John K.-H. Quah, 2017. "A Comprehensive Approach to Revealed Preference Theory," American Economic Review, American Economic Association, vol. 107(4), pages 1239-1263, April.
  2. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
  3. Gianni Bosi & Laura Franzoi & Gabriele Sbaiz, 2023. "Properties of Topologies for the Continuous Representability of All Weakly Continuous Preorders," Mathematics, MDPI, vol. 11(20), pages 1-9, October.
  4. Yann Rébillé, 2019. "Continuous utility on connected separable topological spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 147-153, May.
  5. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
  6. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
  7. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2023. "The classification of preordered spaces in terms of monotones: complexity and optimization," Theory and Decision, Springer, vol. 94(4), pages 693-720, May.
  8. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
  9. Bosi, Gianni & Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban & Zuanon, Magali E., 2007. "Isotonies on ordered cones through the concept of a decreasing scale," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 115-127, September.
  10. Herden, G., 1995. "On some equivalent approaches to Mathematical Utility Theory," Mathematical Social Sciences, Elsevier, vol. 29(1), pages 19-31, February.
  11. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
  12. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
  13. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "Representing preorders with injective monotones," Theory and Decision, Springer, vol. 93(4), pages 663-690, November.
  14. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
  15. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
  16. Asier Estevan & Roberto Maura & Óscar Valero, 2023. "Quasi-Metrics for Possibility Results: Intergenerational Preferences and Continuity," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
  17. Gianni Bosi, 1995. "Continuous representations of interval orders based on induced preorders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 18(1), pages 75-81, March.
  18. Bosi, Gianni & Zuanon, Magali E., 2003. "Continuous representability of homothetic preorders by means of sublinear order-preserving functions," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 333-341, July.
  19. M. Ali Khan & Metin Uyanik, 2020. "Binary Relations in Mathematical Economics: On the Continuity, Additivity and Monotonicity Postulates in Eilenberg, Villegas and DeGroot," Papers 2007.01952, arXiv.org.
  20. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "The classification of preordered spaces in terms of monotones: complexity and optimization," Papers 2202.12106, arXiv.org, revised Aug 2022.
  21. Bosi, Gianni & Isler, Romano, 1995. "Representing preferences with nontransitive indifference by a single real-valued function," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 621-631.
  22. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
  23. Gianni Bosi & Magalì Zuanon, 2021. "Topologies for the Continuous Representability of All Continuous Total Preorders," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 420-431, February.
  24. Romano Isler, 1997. "Semicontinuous utility functions in topological spaces," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 20(1), pages 111-116, June.
  25. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
  26. Bosi, Gianni & Herden, Gerhard, 2014. "Topological spaces for which every closed and semi-closed preorder respectively admits a continuous multi-utility representation," MPRA Paper 53404, University Library of Munich, Germany.
  27. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.