IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v29y1995i1p19-31.html
   My bibliography  Save this article

On some equivalent approaches to Mathematical Utility Theory

Author

Listed:
  • Herden, G.

Abstract

No abstract is available for this item.

Suggested Citation

  • Herden, G., 1995. "On some equivalent approaches to Mathematical Utility Theory," Mathematical Social Sciences, Elsevier, vol. 29(1), pages 19-31, February.
  • Handle: RePEc:eee:matsoc:v:29:y:1995:i:1:p:19-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0165-4896(94)00761-V
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herden, G., 1991. "Topological spaces for which every continuous total preorder can be represented by a continuous utility function," Mathematical Social Sciences, Elsevier, vol. 22(2), pages 123-136, October.
    2. Herden, G., 1989. "On the existence of utility functions," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 297-313, June.
    3. Herden, G., 1989. "On the existence of utility functions ii," Mathematical Social Sciences, Elsevier, vol. 18(2), pages 107-117, October.
    4. Mehta, Ghanshyam, 1977. "Topological Ordered Spaces and Utility Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 779-782, October.
    5. Lee, Lung-Fei, 1972. "The Theorems of Debreu and Peleg for Ordered Topological Spaces," Econometrica, Econometric Society, vol. 40(6), pages 1151-1153, November.
    6. Beardon, A. F. & Mehta, G. B., 1994. "Utility functions and the order type of the continuum," Journal of Mathematical Economics, Elsevier, vol. 23(4), pages 387-390, July.
    7. Richter, Marcel K, 1980. "Continuous and Semi-Continuous Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 293-299, June.
    8. Beardon, A F, 1992. "Debreu's Gap Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(1), pages 150-152, January.
    9. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    10. Beardon, Alan F & Mehta, Ghanshyam B, 1994. "The Utility Theorems of Wold, Debreu, and Arrow-Hahn," Econometrica, Econometric Society, vol. 62(1), pages 181-186, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Alcantud & G. Bosi & M. Campión & J. Candeal & E. Induráin & C. Rodríguez-Palmero, 2008. "Continuous Utility Functions Through Scales," Theory and Decision, Springer, vol. 64(4), pages 479-494, June.
    2. Yann Rébillé, 2019. "Continuous utility on connected separable topological spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 147-153, May.
    3. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    4. Bosi, Gianni & Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban & Zuanon, Magali E., 2007. "Isotonies on ordered cones through the concept of a decreasing scale," Mathematical Social Sciences, Elsevier, vol. 54(2), pages 115-127, September.
    5. Magyarkuti, Gyula, 2008. "Szeparábilitási koncepciók és a reprezentációs tétel Nachbin-féle megközelítése [Urishon-Nachbin approach to utility representation theorem]," MPRA Paper 20171, University Library of Munich, Germany.
    6. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    7. Uyanik, Metin & Khan, M. Ali, 2022. "The continuity postulate in economic theory: A deconstruction and an integration," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    8. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Rébillé, 2019. "Continuous utility on connected separable topological spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 147-153, May.
    2. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    3. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    4. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "Representing preorders with injective monotones," Theory and Decision, Springer, vol. 93(4), pages 663-690, November.
    5. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
    6. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    7. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
    8. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    9. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    10. Gianni Bosi & Magalì Zuanon, 2021. "Topologies for the Continuous Representability of All Continuous Total Preorders," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 420-431, February.
    11. Uyanik, Metin & Khan, M. Ali, 2022. "The continuity postulate in economic theory: A deconstruction and an integration," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    12. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    13. Asier Estevan & Roberto Maura & Óscar Valero, 2023. "Quasi-Metrics for Possibility Results: Intergenerational Preferences and Continuity," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    14. Bosi, Gianni & Isler, Romano, 1995. "Representing preferences with nontransitive indifference by a single real-valued function," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 621-631.
    15. M. Ali Khan & Metin Uyanik, 2020. "Binary Relations in Mathematical Economics: On the Continuity, Additivity and Monotonicity Postulates in Eilenberg, Villegas and DeGroot," Papers 2007.01952, arXiv.org.
    16. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    17. Gianni Bosi & Laura Franzoi & Gabriele Sbaiz, 2023. "Properties of Topologies for the Continuous Representability of All Weakly Continuous Preorders," Mathematics, MDPI, vol. 11(20), pages 1-9, October.
    18. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    19. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "The classification of preordered spaces in terms of monotones: complexity and optimization," Papers 2202.12106, arXiv.org, revised Aug 2022.
    20. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:29:y:1995:i:1:p:19-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.