IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v24y1995i7p621-631.html
   My bibliography  Save this article

Representing preferences with nontransitive indifference by a single real-valued function

Author

Listed:
  • Bosi, Gianni
  • Isler, Romano

Abstract

No abstract is available for this item.

Suggested Citation

  • Bosi, Gianni & Isler, Romano, 1995. "Representing preferences with nontransitive indifference by a single real-valued function," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 621-631.
  • Handle: RePEc:eee:mateco:v:24:y:1995:i:7:p:621-631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4068(94)00706-G
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herden, G., 1989. "On the existence of utility functions," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 297-313, June.
    2. Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
    3. Bridges, Douglas S., 1986. "Numerical representation of interval orders on a topological space," Journal of Economic Theory, Elsevier, vol. 38(1), pages 160-166, February.
    4. Herden, G., 1989. "Some lifting theorems for continuous utility functions," Mathematical Social Sciences, Elsevier, vol. 18(2), pages 119-134, October.
    5. Herden, G., 1989. "On the existence of utility functions ii," Mathematical Social Sciences, Elsevier, vol. 18(2), pages 107-117, October.
    6. Mehta, Ghanshyam, 1988. "Some general theorems on the existence of order-preserving functions," Mathematical Social Sciences, Elsevier, vol. 15(2), pages 135-143, April.
    7. Mehta, Ghanshyam, 1977. "Topological Ordered Spaces and Utility Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 779-782, October.
    8. Gianni Bosi, 1993. "A numerical representation of semiorders on a countable set," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 16(2), pages 15-19, September.
    9. Bridges, Douglas S., 1983. "Numerical representation of intransitive preferences on a countable set," Journal of Economic Theory, Elsevier, vol. 30(1), pages 213-217, June.
    10. Candeal-Haro, Juan Carlos & Indurain-Eraso, Esteban, 1993. "Utility representations from the concept of measure," Mathematical Social Sciences, Elsevier, vol. 26(1), pages 51-62, July.
    11. Gensemer, Susan H., 1987. "Continuous semiorder representations," Journal of Mathematical Economics, Elsevier, vol. 16(3), pages 275-289, June.
    12. Bridges, Douglas S., 1985. "Representing interval orders by a single real-valued function," Journal of Economic Theory, Elsevier, vol. 36(1), pages 149-155, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abrísqueta, Francisco J. & Candeal, Juan C. & Induráin, Esteban & Zudaire, Margarita, 2009. "Scott-Suppes representability of semiorders: Internal conditions," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 245-261, March.
    2. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    3. Candeal, Juan Carlos & Indurain, Esteban & Zudaire, Margarita, 2002. "Numerical representability of semiorders," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 61-77, January.
    4. Gianni Bosi, 1995. "Continuous representations of interval orders based on induced preorders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 18(1), pages 75-81, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Rébillé, 2019. "Continuous utility on connected separable topological spaces," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 147-153, May.
    2. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    3. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "Representing preorders with injective monotones," Theory and Decision, Springer, vol. 93(4), pages 663-690, November.
    4. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    5. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
    6. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    7. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    8. Begoña Subiza Martínez & Carmen Herrero Blanco, 1991. "A characterization of acyclic preferences on countable sets," Working Papers. Serie AD 1991-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    9. Begoña Subiza Martínez, 1993. "Numerical Representation Of Acyclic Preferences," Working Papers. Serie AD 1993-09, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    10. Dziewulski, Paweł, 2020. "Just-noticeable difference as a behavioural foundation of the critical cost-efficiency index," Journal of Economic Theory, Elsevier, vol. 188(C).
    11. Oloriz, Esteban & Candeal, Juan Carlos & Indurain, Esteban, 1998. "Representability of Interval Orders," Journal of Economic Theory, Elsevier, vol. 78(1), pages 219-227, January.
    12. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    13. Pawel Dziewulski, 2018. "Just-noticeable difference as a behavioural foundation of the critical cost-efficiency," Economics Series Working Papers 848, University of Oxford, Department of Economics.
    14. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
    15. Herden, G., 1995. "On some equivalent approaches to Mathematical Utility Theory," Mathematical Social Sciences, Elsevier, vol. 29(1), pages 19-31, February.
    16. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    17. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    18. Gilboa, Itzhak & Lapson, Robert, 1995. "Aggregation of Semiorders: Intransitive Indifference Makes a Difference," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-126, January.
    19. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    20. Jose C. R. Alcantud & Ghanshyam B. Mehta, 2005. "Constructive Utility Functions on Banach spaces," Microeconomics 0502003, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:24:y:1995:i:7:p:621-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.