IDEAS home Printed from https://ideas.repec.org/r/eee/juipol/v37y2015icp86-96.html
   My bibliography  Save this item

A GIS-based Multiple Criteria Decision Analysis approach for wind power plant site selection

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kruger, Wikus & Stritzke, Susann & Trotter, Philipp A., 2019. "De-risking solar auctions in sub-Saharan Africa – A comparison of site selection strategies in South Africa and Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 429-438.
  2. Ryberg, David Severin & Tulemat, Zena & Stolten, Detlef & Robinius, Martin, 2020. "Uniformly constrained land eligibility for onshore European wind power," Renewable Energy, Elsevier, vol. 146(C), pages 921-931.
  3. Gao, Jianwei & Wang, Yaping & Huang, Ningbo & Wei, Lingli & Zhang, Zixuan, 2022. "Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework," Renewable Energy, Elsevier, vol. 201(P1), pages 1139-1162.
  4. Tafarte, Philip & Lehmann, Paul, 2023. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity – A case study for Germany," Ecological Economics, Elsevier, vol. 209(C).
  5. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
  6. Erbaş, Mehmet & Kabak, Mehmet & Özceylan, Eren & Çetinkaya, Cihan, 2018. "Optimal siting of electric vehicle charging stations: A GIS-based fuzzy Multi-Criteria Decision Analysis," Energy, Elsevier, vol. 163(C), pages 1017-1031.
  7. Hassan, Qusay & Nassar, Ahmed K. & Algburi, Sameer & Fouly, Ahmed & Awwad, Emad Mahrous & Jaszczur, Marek & Viktor, Patrik & Amjad, Ayesha & Fakhruldeen, Hassan Falah & Al-Jiboory, Ali Khudhair & Same, 2024. "Evaluation of solar and biomass perspectives using geographic information system - The case of Iraq regions," Renewable Energy, Elsevier, vol. 227(C).
  8. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
  9. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
  10. Özceylan, Eren & Çetinkaya, Cihan & Erbaş, Mehmet & Kabak, Mehmet, 2016. "Logistic performance evaluation of provinces in Turkey: A GIS-based multi-criteria decision analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 323-337.
  11. Eva Loukogeorgaki & Dimitra G. Vagiona & Margarita Vasileiou, 2018. "Site Selection of Hybrid Offshore Wind and Wave Energy Systems in Greece Incorporating Environmental Impact Assessment," Energies, MDPI, vol. 11(8), pages 1-16, August.
  12. Agyekum, Ephraim Bonah & Amjad, Fahd & Mohsin, Muhammad & Ansah, Michael Nii Sanka, 2021. "A bird's eye view of Ghana's renewable energy sector environment: A Multi-Criteria Decision-Making approach," Utilities Policy, Elsevier, vol. 70(C).
  13. Tafarte, Philip & Lehmann, Paul, 2021. "Quantifying trade-offs for the spatial allocation of onshore wind generation capacity: A case study for Germany," UFZ Discussion Papers 2/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  14. Yildiz, S.S., 2024. "Spatial multi-criteria decision making approach for wind farm site selection: A case study in Balıkesir, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  15. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
  16. Arijit Ghosh & Neha Ghorui & Sankar Prasad Mondal & Suchitra Kumari & Biraj Kanti Mondal & Aditya Das & Mahananda Sen Gupta, 2021. "Application of Hexagonal Fuzzy MCDM Methodology for Site Selection of Electric Vehicle Charging Station," Mathematics, MDPI, vol. 9(4), pages 1-27, February.
  17. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  18. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
  19. Wenjun Chen & Yanlei Zhu & Meng Yang & Jiahai Yuan, 2017. "Optimal Site Selection of Wind-Solar Complementary Power Generation Project for a Large-Scale Plug-In Charging Station," Sustainability, MDPI, vol. 9(11), pages 1-22, October.
  20. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
  21. Hossein Yousefi & Hamed Hafeznia & Amin Yousefi-Sahzabi, 2018. "Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran," Energies, MDPI, vol. 11(7), pages 1-18, June.
  22. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
  23. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
  24. Chaouachi, Aymen & Covrig, Catalin Felix & Ardelean, Mircea, 2017. "Multi-criteria selection of offshore wind farms: Case study for the Baltic States," Energy Policy, Elsevier, vol. 103(C), pages 179-192.
  25. Alphan, Hakan, 2024. "Incorporating visibility information into multi-criteria decision making (MCDM) for wind turbine deployment," Applied Energy, Elsevier, vol. 353(PB).
  26. Rahim Moltames & Mohammad Sajad Naghavi & Mahyar Silakhori & Younes Noorollahi & Hossein Yousefi & Mostafa Hajiaghaei-Keshteli & Behzad Azizimehr, 2022. "Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS)," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
  27. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
  28. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
  29. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
  30. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
  31. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
  32. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  33. Jessica Weber & Johann Köppel, 2022. "Can MCDA Serve Ex-Post to Indicate ‘Winners and Losers’ in Sustainability Dilemmas? A Case Study of Marine Spatial Planning in Germany," Energies, MDPI, vol. 15(20), pages 1-30, October.
  34. Ceren Erdin & Halil Emre Akbaş, 2019. "A Comparative Analysis of Fuzzy TOPSIS and Geographic Information Systems (GIS) for the Location Selection of Shopping Malls: A Case Study from Turkey," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
  35. Vasileiou, Margarita & Loukogeorgaki, Eva & Vagiona, Dimitra G., 2017. "GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 745-757.
  36. Eichhorn, Marcus & Masurowski, Frank & Becker, Raik & Thrän, Daniela, 2019. "Wind energy expansion scenarios – A spatial sustainability assessment," Energy, Elsevier, vol. 180(C), pages 367-375.
  37. Sarah Ben Amor & Fateh Belaid & Ramzi Benkraiem & Boumediene Ramdani & Khaled Guesmi, 2023. "Multi-criteria classification, sorting, and clustering: a bibliometric review and research agenda," Annals of Operations Research, Springer, vol. 325(2), pages 771-793, June.
  38. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
  39. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
  40. Rediske, G. & Burin, H.P. & Rigo, P.D. & Rosa, C.B. & Michels, L. & Siluk, J.C.M., 2021. "Wind power plant site selection: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.