IDEAS home Printed from https://ideas.repec.org/r/eee/jomega/v17y1989i6p551-557.html
   My bibliography  Save this item

Simulated annealing for permutation flow-shop scheduling

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 2006. "Some aspects of scatter search in the flow-shop problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 654-666, March.
  2. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
  3. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
  4. Sabuncuoglu, Ihsan & Gurgun, Burckaan, 1996. "A neural network model for scheduling problems," European Journal of Operational Research, Elsevier, vol. 93(2), pages 288-299, September.
  5. Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
  6. Allet, Samir, 2003. "Handling flexibility in a "generalised job shop" with a fuzzy approach," European Journal of Operational Research, Elsevier, vol. 147(2), pages 312-333, June.
  7. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
  8. Yenisey, Mehmet Mutlu & Yagmahan, Betul, 2014. "Multi-objective permutation flow shop scheduling problem: Literature review, classification and current trends," Omega, Elsevier, vol. 45(C), pages 119-135.
  9. Suliman, S. M. A., 2000. "A two-phase heuristic approach to the permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 143-152, March.
  10. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
  11. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
  12. Zoltán Varga & Pál Simon, 2014. "Examination Of Scheduling Methods For Production Systems," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 8(1), pages 111-120, December.
  13. Koulamas, Christos, 1998. "A new constructive heuristic for the flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 105(1), pages 66-71, February.
  14. Mukherjee, Saral & Chatterjee, A.K., 2006. "Applying machine based decomposition in 2-machine flow shops," European Journal of Operational Research, Elsevier, vol. 169(3), pages 723-741, March.
  15. Nearchou, A.C.Andreas C., 2004. "The effect of various operators on the genetic search for large scheduling problems," International Journal of Production Economics, Elsevier, vol. 88(2), pages 191-203, March.
  16. Rajendran, Chandrasekharan, 1995. "Heuristics for scheduling in flowshop with multiple objectives," European Journal of Operational Research, Elsevier, vol. 82(3), pages 540-555, May.
  17. Zhang, Yi & Li, Xiaoping & Wang, Qian, 2009. "Hybrid genetic algorithm for permutation flowshop scheduling problems with total flowtime minimization," European Journal of Operational Research, Elsevier, vol. 196(3), pages 869-876, August.
  18. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.
  19. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
  20. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
  21. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
  22. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
  23. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
  24. Liu, Shi Qiang & Kozan, Erhan, 2009. "Scheduling a flow shop with combined buffer conditions," International Journal of Production Economics, Elsevier, vol. 117(2), pages 371-380, February.
  25. Wahiba Jomaa & Mansour Eddaly & Bassem Jarboui, 2021. "Variable neighborhood search algorithms for the permutation flowshop scheduling problem with the preventive maintenance," Operational Research, Springer, vol. 21(4), pages 2525-2542, December.
  26. Sadrani, Mohammad & Tirachini, Alejandro & Antoniou, Constantinos, 2022. "Vehicle dispatching plan for minimizing passenger waiting time in a corridor with buses of different sizes: Model formulation and solution approaches," European Journal of Operational Research, Elsevier, vol. 299(1), pages 263-282.
  27. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
  28. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
  29. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
  30. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
  31. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
  32. Mukherjee, Saral & Chatterjee Ashis K, 2002. "Applying Machine Based Decomposition in 2-Machine Flow Shops," IIMA Working Papers WP2002-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
  33. Rubén Ruiz & Ali Allahverdi, 2007. "Some effective heuristics for no-wait flowshops with setup times to minimize total completion time," Annals of Operations Research, Springer, vol. 156(1), pages 143-171, December.
  34. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
  35. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
  36. Srivastava, Bharatendu & Chen, Wun-Hwa, 1996. "Batching in production planning for flexible manufacturing systems," International Journal of Production Economics, Elsevier, vol. 43(2-3), pages 127-137, June.
  37. W Q Huang & L Wang, 2006. "A local search method for permutation flow shop scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1248-1251, October.
  38. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
  39. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.
  40. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
  41. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
  42. Tian, Peng & Ma, Jian & Zhang, Dong-Mo, 1999. "Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property: An investigation of generation mechanism," European Journal of Operational Research, Elsevier, vol. 118(1), pages 81-94, October.
  43. Vincent F. Yu & Shin-Yu Lin, 2016. "Solving the location-routing problem with simultaneous pickup and delivery by simulated annealing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 526-549, January.
  44. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
  45. Chu, Chengbin & Proth, Jean-Marie & Sethi, Suresh, 1995. "Heuristic procedures for minimizing makespan and the number of required pallets," European Journal of Operational Research, Elsevier, vol. 86(3), pages 491-502, November.
  46. Peng-Yeng Yin & Hsin-Min Chen & Yi-Lung Cheng & Ying-Chieh Wei & Ya-Lin Huang & Rong-Fuh Day, 2021. "Minimizing the Makespan in Flowshop Scheduling for Sustainable Rubber Circular Manufacturing," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
  47. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
  48. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
  49. C.K.Y. Lin & Haley, K. B. & Sparks, C., 1995. "A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems," European Journal of Operational Research, Elsevier, vol. 83(2), pages 330-346, June.
  50. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
  51. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
  52. Zegordi, Seyed Hessameddin & Itoh, Kenji & Enkawa, Takao, 1995. "Minimizing makespan for flow shop scheduling by combining simulated annealing with sequencing knowledge," European Journal of Operational Research, Elsevier, vol. 85(3), pages 515-531, September.
  53. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
  54. Jozefowska, Joanna & Mika, Marek & Rozycki, Rafal & Waligora, Grzegorz & Weglarz, Jan, 1998. "Local search metaheuristics for discrete-continuous scheduling problems," European Journal of Operational Research, Elsevier, vol. 107(2), pages 354-370, June.
  55. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
  56. Li, Xiaoping & Chen, Long & Xu, Haiyan & Gupta, Jatinder N.D., 2015. "Trajectory Scheduling Methods for minimizing total tardiness in a flowshop," Operations Research Perspectives, Elsevier, vol. 2(C), pages 13-23.
  57. Çetin, Gürcan & Keçebaş, Ali, 2021. "Optimization of thermodynamic performance with simulated annealing algorithm: A geothermal power plant," Renewable Energy, Elsevier, vol. 172(C), pages 968-982.
  58. Wilson, Amy D. & King, Russell E. & Wilson, James R., 2004. "Case study on statistically estimating minimum makespan for flow line scheduling problems," European Journal of Operational Research, Elsevier, vol. 155(2), pages 439-454, June.
  59. Blazewicz, Jacek & Breit, Joachim & Formanowicz, Piotr & Kubiak, Wieslaw & Schmidt, Günter, 2001. "Heuristic algorithms for the two-machine flowshop with limited machine availability," Omega, Elsevier, vol. 29(6), pages 599-608, December.
  60. He, Zesheng & Yang, Taeyong & Tiger, Andy, 1996. "An exchange heuristic imbedded with simulated annealing for due-dates job-shop scheduling," European Journal of Operational Research, Elsevier, vol. 91(1), pages 99-117, May.
  61. Kim, Yeong-Dae & Lim, Hyeong-Gyu & Park, Moon-Won, 1996. "Search heuristics for a flowshop scheduling problem in a printed circuit board assembly process," European Journal of Operational Research, Elsevier, vol. 91(1), pages 124-143, May.
  62. Zhang, Qin & Liu, Yu & Xiahou, Tangfan & Huang, Hong-Zhong, 2023. "A heuristic maintenance scheduling framework for a military aircraft fleet under limited maintenance capacities," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  63. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
  64. Rad, Shahriar Farahmand & Ruiz, Rubén & Boroojerdian, Naser, 2009. "New high performing heuristics for minimizing makespan in permutation flowshops," Omega, Elsevier, vol. 37(2), pages 331-345, April.
  65. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
  66. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.