IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v8y1992i2p135-156.html
   My bibliography  Save this item

Some recent developments in non-linear time series modelling, testing, and forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
  2. Yue Fang & John Zhang, 1999. "Performance of control charts for autoregressive conditional heteroscedastic processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 701-714.
  3. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
  4. Debasis Mithiya & Kumarjit Mandal & Simanti Bandyopadhyay, 2020. "Time Series Analysis and Forecasting of Rainfall for Agricultural Crops in India: An Application of Artificial Neural Network," Research in Applied Economics, Macrothink Institute, vol. 12(4), pages 1-21, December.
  5. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
  6. Terui, Nobuhiko & van Dijk, Herman K., 2002. "Combined forecasts from linear and nonlinear time series models," International Journal of Forecasting, Elsevier, vol. 18(3), pages 421-438.
  7. Crespo-Cuaresma, Jesus, 2000. "Forecasting European GDP Using Self-Exciting Threshold Autoregressive Models. A Warning," Economics Series 79, Institute for Advanced Studies.
  8. Oscar Claveria & Enric Monte & Salvador Torra, 2014. "“A multivariate neural network approach to tourism demand forecasting”," IREA Working Papers 201417, University of Barcelona, Research Institute of Applied Economics, revised May 2014.
  9. Rituparna Kar & Nityananda Sarkar, 2006. "Mean and volatility dynamics of Indian rupee/US dollar exchange rate series: an empirical investigation," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(1), pages 41-69, March.
  10. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
  11. Jing Li, 2021. "Block bootstrap prediction intervals for parsimonious first‐order vector autoregression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 512-527, April.
  12. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
  13. King Chi Hung & Siu Hung Cheung & Wai-Sum Chan & Li-Xin Zhang, 2009. "On a robust test for SETAR-type nonlinearity in time series analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 445-464.
  14. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
  15. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
  16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
  17. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
  18. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  19. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
  20. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  21. Filelis - Papadopoulos, Christos K. & Kyziropoulos, Panagiotis E. & Morrison, John P. & O‘Reilly, Philip, 2022. "Modelling and forecasting based on recursive incomplete pseudoinverse matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 358-376.
  22. Guglielmo Maria Caporale & Nicola Spagnolo, 2004. "Modelling East Asian exchange rates: a Markov-switching approach," Applied Financial Economics, Taylor & Francis Journals, vol. 14(4), pages 233-242.
  23. Shiying Tu & Jiehu Huang & Huailong Mu & Juan Lu & Ying Li, 2024. "Combining Autoregressive Integrated Moving Average Model and Gaussian Process Regression to Improve Stock Price Forecast," Mathematics, MDPI, vol. 12(8), pages 1-15, April.
  24. Tissaoui, Kais, 2019. "Forecasting implied volatility risk indexes: International evidence using Hammerstein-ARX approach," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 232-249.
  25. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332.
  26. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
  27. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
  28. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
  29. Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
  30. Wang, Minggang & Tian, Lixin & Zhou, Peng, 2018. "A novel approach for oil price forecasting based on data fluctuation network," Energy Economics, Elsevier, vol. 71(C), pages 201-212.
  31. Clements, Michael P. & Smith, Jeremy, 1997. "The performance of alternative forecasting methods for SETAR models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 463-475, December.
  32. Blanco, Aníbal M. & Chantre, Guillermo R. & Lodovichi, Mariela V. & Bandoni, J. Alberto & López, Ricardo L. & Vigna, Mario R. & Gigón, Ramón & Sabbatini, Mario R., 2014. "Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach," Ecological Modelling, Elsevier, vol. 272(C), pages 293-300.
  33. Dilip Nachane & Jose Clavel, 2008. "Forecasting interest rates: a comparative assessment of some second-generation nonlinear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(5), pages 493-514.
  34. Hui Feng & Jia Liu, 2003. "A SETAR model for Canadian GDP: non-linearities and forecast comparisons," Applied Economics, Taylor & Francis Journals, vol. 35(18), pages 1957-1964.
  35. Qi, Min & Zhang, Guoqiang Peter, 2001. "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, Elsevier, vol. 132(3), pages 666-680, August.
  36. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
  37. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
  38. Dick van Dijk & Philip Hans Franses, 2003. "Selecting a Nonlinear Time Series Model using Weighted Tests of Equal Forecast Accuracy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 727-744, December.
  39. Houda Ben Hadj Boubaker, 2011. "The Forecasting Performance of Seasonal and Nonlinear Models," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 1(1), pages 26-39, March.
  40. Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
  41. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
  42. Nadir Ocal & Denise R. Osborn, 2000. "Business cycle non-linearities in UK consumption and production," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 27-43.
  43. Martín González-Rozada & Luis Pereiro, 2013. "Forecasting Prices in Regime-Switching Markets," Department of Economics Working Papers 2013_2, Universidad Torcuato Di Tella.
  44. Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
  45. Etaf Alshawarbeh & Alanazi Talal Abdulrahman & Eslam Hussam, 2023. "Statistical Modeling of High Frequency Datasets Using the ARIMA-ANN Hybrid," Mathematics, MDPI, vol. 11(22), pages 1-17, November.
  46. De Gooijer, Jan G. & Ray, Bonnie K. & Krager, Horst, 1998. "Forecasting exchange rates using TSMARS," Journal of International Money and Finance, Elsevier, vol. 17(3), pages 513-534, June.
  47. McMillan, David G., 2007. "Non-linear forecasting of stock returns: Does volume help?," International Journal of Forecasting, Elsevier, vol. 23(1), pages 115-126.
  48. Wu, Berlin, 1995. "Model-free forecasting for nonlinear time series (with application to exchange rates)," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 433-459, April.
  49. Kasai, Ndahiriwe & Naraidoo, Ruthira, 2011. "Evaluating the forecasting performance of linear and nonlinear monetary policy rules for South Africa," MPRA Paper 40699, University Library of Munich, Germany.
  50. Guy Melard, 1994. "Modèles linéaires et non linéaires," ULB Institutional Repository 2013/13804, ULB -- Universite Libre de Bruxelles.
  51. Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
  52. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
  53. Li, Jing, 2011. "Bootstrap prediction intervals for SETAR models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 320-332, April.
  54. Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
  55. Anoop Chaturvedi & Shivam Jaiswal, 2020. "Bayesian Estimation and Unit Root Test for Logistic Smooth Transition Autoregressive Process," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(4), pages 733-745, December.
  56. Arora Siddharth & Little Max A. & McSharry Patrick E., 2013. "Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 395-420, September.
  57. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean-Marie, 2005. "A global forecasting support system adapted to textile distribution," International Journal of Production Economics, Elsevier, vol. 96(1), pages 81-95, April.
  58. Michael Štencl & Ondřej Popelka & Jiří Šťastný, 2012. "Forecast of consumer behaviour based on neural networks models comparison," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 60(2), pages 437-442.
  59. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
  60. Mohamed A. Ismail & Husni A. Charif, 2003. "Bayesian inference for threshold moving average models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 119-132.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.