IDEAS home Printed from https://ideas.repec.org/a/mup/actaun/actaun_2012060020437.html
   My bibliography  Save this article

Forecast of consumer behaviour based on neural networks models comparison

Author

Listed:
  • Michael Štencl

    (Ústav informatiky, Mendelova univerzita v Brně, 613 00 Brno, Česká republika)

  • Ondřej Popelka

    (Ústav informatiky, Mendelova univerzita v Brně, 613 00 Brno, Česká republika)

  • Jiří Šťastný

    (Ústav informatiky, Mendelova univerzita v Brně, 613 00 Brno, Česká republika)

Abstract

The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models' input conditions were not so strict and model with missing data was used (the time series didn't contain many values) we have obtained comparably good results with artificial neural networks. Two views - practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3) which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.

Suggested Citation

  • Michael Štencl & Ondřej Popelka & Jiří Šťastný, 2012. "Forecast of consumer behaviour based on neural networks models comparison," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 60(2), pages 437-442.
  • Handle: RePEc:mup:actaun:actaun_2012060020437
    DOI: 10.11118/actaun201260020437
    as

    Download full text from publisher

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201260020437.html
    Download Restriction: free of charge

    File URL: http://acta.mendelu.cz/doi/10.11118/actaun201260020437.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.11118/actaun201260020437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
    2. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    4. Dan Zhu & Qingwei Wang & John Goddard, 2022. "A new hedging hypothesis regarding prediction interval formation in stock price forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 697-717, July.
    5. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    6. Fildes, Robert & Goodwin, Paul & Onkal, Dilek, 2015. "Information use in supply chain forecasting," MPRA Paper 66034, University Library of Munich, Germany.
    7. Schultze, Thomas & Schulz-Hardt, Stefan, 2015. "The impact of biased information and corresponding meta-information on escalating commitment," Journal of Economic Psychology, Elsevier, vol. 49(C), pages 108-119.
    8. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    9. Patrick Krieger & Carsten Lausberg, 2021. "Entscheidungen, Entscheidungsfindung und Entscheidungsunterstützung in der Immobilienwirtschaft: Eine systematische Literaturübersicht [Decisions, decision-making and decisions support systems in r," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 7(1), pages 1-33, April.
    10. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    11. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    12. Rybacki, Jakub & Gniazdowski, Michał, 2021. "Macroeconomic Forecasting in Poland: Lessons From the COVID-19 Outbreak," MPRA Paper 107682, University Library of Munich, Germany.
    13. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    14. Bryce McLaughlin & Jann Spiess, 2022. "Algorithmic Assistance with Recommendation-Dependent Preferences," Papers 2208.07626, arXiv.org, revised Jan 2024.
    15. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    16. Franses, Philip Hans, 2008. "Merging models and experts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 31-33.
    17. Markus Glaser & Thomas Langer & Martin Weber, 2007. "On the Trend Recognition and Forecasting Ability of Professional Traders," Decision Analysis, INFORMS, vol. 4(4), pages 176-193, December.
    18. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    19. Faizal Mohamed Yusof & Rozainun Abdul Aziz, 2008. "Strategic adaptation and the value of forecasts: The development of a conceptual framework," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 9(2), pages 107-114, March.
    20. Daniel Feiler & Jordan Tong, 2022. "From Noise to Bias: Overconfidence in New Product Forecasting," Management Science, INFORMS, vol. 68(6), pages 4685-4702, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mup:actaun:actaun_2012060020437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://mendelu.cz/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.