My bibliography
Save this item
A note on the Mean Absolute Scaled Error
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
- Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
- Barkha Parkash & Tek Tjing Lie & Weihua Li & Shafiqur Rahman Tito, 2024. "End-to-End Top-Down Load Forecasting Model for Residential Consumers," Energies, MDPI, vol. 17(11), pages 1-20, May.
- Chiang, Shu-Mei & Chen, Chun-Da & Huang, Chien-Ming, 2019. "Analyzing the impacts of foreign exchange and oil price on biofuel commodity futures," Journal of International Money and Finance, Elsevier, vol. 96(C), pages 37-48.
- Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
- Wen, Shizhao & Wang, Hongzeng & Qian, Jinhua & Men, Xuanyu, 2023. "A novel combined model based on echo state network optimized by whale optimization algorithm for blast furnace gas prediction," Energy, Elsevier, vol. 279(C).
- Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
- Krzysztof Tomczyk, 2023. "Extended Calibration of Charge Mode Accelerometers to Improve the Accuracy of Energy Systems," Energies, MDPI, vol. 16(22), pages 1-14, November.
- Pokorný, Jiří & Froněk, Pavel, 2021. "Price Forecasting Accuracy of the OECD-FAO's Agricultural Outlook and the European Commission DG AGRI's Medium-Term Agricultural Outlook Report," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 13(3), September.
- Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
- Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
- Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Franses, Ph.H.B.F. & Maassen, N.R., 2015. "Consensus forecasters: How good are they individually and why?," Econometric Institute Research Papers EI2015-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
- Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
- David BENATIA, 2020. "Reaching New Lows? The Pandemic's Consequences for Electricity Markets," Working Papers 2020-12, Center for Research in Economics and Statistics.
- Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
- Jens Kley-Holsteg & Florian Ziel, 2020. "Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso," Papers 2005.04522, arXiv.org.
- Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).