My bibliography
Save this item
Robust approaches to forecasting
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- In all probability, economic forecasts are probably wrong
by David F Hendry, Director, Economic Modelling, The Institute for New Economic Thinking at the Oxford Martin School at University of Oxford in The Conversation on 2014-07-18 17:06:35
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
- Ericsson, Neil R., 2016.
"Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," Working Papers 2015-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," International Finance Discussion Papers 1152, Board of Governors of the Federal Reserve System (U.S.).
- Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016.
"An Overview of Forecasting Facing Breaks,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
- Jennifer Castle & David Hendry & Michael P. Clements, 2016. "An Overview of Forecasting Facing Breaks," Economics Series Working Papers 779, University of Oxford, Department of Economics.
- Hendry, David F., 2018.
"Deciding between alternative approaches in macroeconomics,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
- David Hendry, 2016. "Deciding Between Alternative Approaches In Macroeconomics," Economics Series Working Papers 778, University of Oxford, Department of Economics.
- Emerson Fernandes Marçal & Eli Hadad Junior, 2016. "Is It Possible to Beat the Random Walk Model in Exchange Rate Forecasting? More Evidence for Brazilian Case," Brazilian Review of Finance, Brazilian Society of Finance, vol. 14(1), pages 65-88.
- Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
- Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
- Castle, Jennifer L. & Kurita, Takamitsu, 2021. "A dynamic econometric analysis of the dollar-pound exchange rate in an era of structural breaks and policy regime shifts," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
- John B. Guerard, 2024. "Sir David Hendry: An Appreciation from Wall Street and What Macroeconomics Got Right," Working Papers 2024-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Feb 2024.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Jeronymo Marcondes Pinto & Emerson Fernandes Marçal, 2023. "An artificial intelligence approach to forecasting when there are structural breaks: a reinforcement learning-based framework for fast switching," Empirical Economics, Springer, vol. 65(4), pages 1729-1759, October.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021.
"Selecting a Model for Forecasting,"
Econometrics, MDPI, vol. 9(3), pages 1-35, June.
- Jennifer Castle & Jurgen Doornik & David Hendry, 2018. "Selecting a Model for Forecasting," Economics Series Working Papers 861, University of Oxford, Department of Economics.
- Ericsson, Neil R., 2017.
"How biased are U.S. government forecasts of the federal debt?,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
- Neil R. Ericsson, 2017. "How Biased Are U.S. Government Forecasts of the Federal Debt?," International Finance Discussion Papers 1189, Board of Governors of the Federal Reserve System (U.S.).
- Neil R. Ericsson, 2017. "How Biased Are U.S. Government Forecasts of the Federal Debt?," Working Papers 2017-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Clements, Michael P., 2016.
"Real-time factor model forecasting and the effects of instability,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 661-675.
- Michael P. Clements, 2014. "Real-Time Factor Model Forecasting and the Effects of Instability," ICMA Centre Discussion Papers in Finance icma-dp2014-05, Henley Business School, University of Reading.
- Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2022. "Short-term forecasting of the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(2), pages 453-466.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022.
"Smooth Robust Multi-Horizon Forecasts,"
Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165,
Emerald Group Publishing Limited.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2020. "Smooth Robust Multi-Horizon Forecasts," Working Papers 2020-009, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
- Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
- Clements, Michael P., 2018.
"Are macroeconomic density forecasts informative?,"
International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
- Michael Clements, 2016. "Are Macroeconomic Density Forecasts Informative?," ICMA Centre Discussion Papers in Finance icma-dp2016-02, Henley Business School, University of Reading.
- David F Hendry & John N J Muellbauer, 2018.
"The future of macroeconomics: macro theory and models at the Bank of England,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 34(1-2), pages 287-328.
- David Hendry & John Muellbauer, 2017. "The future of macroeconomics: Macro theory and models at the Bank of England," Economics Series Working Papers 832, University of Oxford, Department of Economics.
- Larson, William D. & Sinclair, Tara M., 2022.
"Nowcasting unemployment insurance claims in the time of COVID-19,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 635-647.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting Unemployment Insurance Claims in the Time of COVID-19," Working Papers 2020-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Aug 2020.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting unemployment insurance claims in the time of COVID-19," CAMA Working Papers 2020-63, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- William D. Larson & Tara M. Sinclair, 2020. "Nowcasting Unemployment Insurance Claims in the Time of COVID-19," FHFA Staff Working Papers 20-02, Federal Housing Finance Agency.
- Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
- Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2020. "Short-term forecasting of the Coronavirus Pandemic - 2020-04-27," Economics Papers 2020-W06, Economics Group, Nuffield College, University of Oxford.
- David F. Hendry, 2020. "A Short History of Macro-econometric Modelling," Economics Papers 2020-W01, Economics Group, Nuffield College, University of Oxford.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Papailias, Fotis & Thomakos, Dimitrios, 2017. "EXSSA: SSA-based reconstruction of time series via exponential smoothing of covariance eigenvalues," International Journal of Forecasting, Elsevier, vol. 33(1), pages 214-229.
- Kyriazi, Foteini & Thomakos, Dimitrios D. & Guerard, John B., 2019. "Adaptive learning forecasting, with applications in forecasting agricultural prices," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1356-1369.