IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v19y2003i2p177-197.html
   My bibliography  Save this item

Exploiting information in vintages of time-series data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Hecq, Alain & Jacobs, Jan P.A.M. & Stamatogiannis, Michalis P., 2019. "Testing for news and noise in non-stationary time series subject to multiple historical revisions," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 396-407.
  2. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2015. "Robust approaches to forecasting," International Journal of Forecasting, Elsevier, vol. 31(1), pages 99-112.
  3. Bouwman, Kees E. & Jacobs, Jan P.A.M., 2011. "Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 784-792.
  4. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
  5. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
  6. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
  7. Michael P. Clements, 2017. "Assessing Macro Uncertainty in Real-Time When Data Are Subject To Revision," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 420-433, July.
  8. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
  9. Easaw Joshy & Golinelli Roberto, 2010. "Households Forming Inflation Expectations: Active and Passive Absorption Rates," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, November.
  10. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
  11. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
  12. Hwa-Taek Lee & Gawon Yoon, 2013. "Does purchasing power parity hold sometimes? Regime switching in real exchange rates," Applied Economics, Taylor & Francis Journals, vol. 45(16), pages 2279-2294, June.
  13. Thomas A. Knetsch & Hans‐Eggert Reimers, 2009. "Dealing with Benchmark Revisions in Real‐Time Data: The Case of German Production and Orders Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(2), pages 209-235, April.
  14. Clements, Michael P & Galvão, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data : Forecasting US output growth and inflation," The Warwick Economics Research Paper Series (TWERPS) 773, University of Warwick, Department of Economics.
  15. Carriero, Andrea & Clements, Michael P. & Galvão, Ana Beatriz, 2015. "Forecasting with Bayesian multivariate vintage-based VARs," International Journal of Forecasting, Elsevier, vol. 31(3), pages 757-768.
  16. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
  17. Kevin Lee & Nilss Olekalns & Kalvinder Shields & Zheng Wang, 2012. "Australian Real-Time Database: An Overview and an Illustration of its Use in Business Cycle Analysis," The Economic Record, The Economic Society of Australia, vol. 88(283), pages 495-516, December.
  18. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset," CSEF Working Papers 274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  19. J. Easaw J. & R. Golinelli, 2009. "Households Forming Inflation Expectations: Who Are the 'Active' and 'Passive' Learners?," Working Papers 675, Dipartimento Scienze Economiche, Universita' di Bologna.
  20. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
  21. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
  22. Kosei Fukuda, 2007. "Forecasting real-time data allowing for data revisions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(6), pages 429-444.
  23. Michael P Clements & Ana Beatriz Galvao, 2017. "Data Revisions and Real-time Probabilistic Forecasting of Macroeconomic Variables," ICMA Centre Discussion Papers in Finance icma-dp2017-01, Henley Business School, University of Reading.
  24. Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Information combination and forecast (st)ability evidence from vintages of time-series data," Working Paper Series 846, European Central Bank.
  25. Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
  26. Jan P.A.M. Jacobs & Samad Sarferaz & Simon van Norden & Jan-Egbert Sturm, 2013. "Modeling Multivariate Data Revisions," CIRANO Working Papers 2013s-44, CIRANO.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.