IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v55y2014icp105-115.html
   My bibliography  Save this item

Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guohui Guan & Zongxia Liang & Yilun Song, 2022. "A Stackelberg reinsurance-investment game under $\alpha$-maxmin mean-variance criterion and stochastic volatility," Papers 2212.14327, arXiv.org.
  2. Sheng Delei, 2016. "The Optimal Strategy of Reinsurance-Investment Problem for an Insurer with Dynamic Income Under Stochastic Interest Rate," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 244-257, June.
  3. Christian Biener & Martin Eling & Shailee Pradhan, 2015. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2013 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 18(1), pages 129-141, March.
  4. Sheng Delei, 2016. "Explicit Solution of the Optimal Reinsurance-Investment Problem with Promotion Budget," Journal of Systems Science and Information, De Gruyter, vol. 4(2), pages 131-148, April.
  5. Zou, Bin & Cadenillas, Abel, 2014. "Optimal investment and risk control policies for an insurer: Expected utility maximization," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 57-67.
  6. Chang Hao & Wang Chunfeng & Fang Zhenming, 2017. "Portfolio Selection with Random Liability and Affine Interest Rate in the Mean-Variance Framework," Journal of Systems Science and Information, De Gruyter, vol. 5(3), pages 229-249, June.
  7. Peng, Xingchun & Wang, Wenyuan, 2016. "Optimal investment and risk control for an insurer under inside information," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 104-116.
  8. repec:cte:idrepe:23546 is not listed on IDEAS
  9. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2016. "Must an optimal buy and hold strategy contain any derivative?," IC3JM - Estudios = Working Papers 23912, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
  10. Jiaqi Zhu & Shenghong Li, 2020. "Time-Consistent Investment and Reinsurance Strategies for Mean-Variance Insurers under Stochastic Interest Rate and Stochastic Volatility," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
  11. Chang, Hao, 2015. "Dynamic mean–variance portfolio selection with liability and stochastic interest rate," Economic Modelling, Elsevier, vol. 51(C), pages 172-182.
  12. Jian Pan & Qingxian Xiao, 2017. "Optimal mean–variance asset-liability management with stochastic interest rates and inflation risks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 491-519, June.
  13. Martin Eling & Ruo Jia, 2017. "Recent Research Developments Affecting Nonlife Insurance—The CAS Risk Premium Project 2014 Update," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 63-77, March.
  14. Ling Wang & Kexin Chen & Mei Choi Chiu & Hoi Ying Wong, 2021. "Optimal Expansion of Business Opportunity," Papers 2112.06706, arXiv.org.
  15. Stanley Jere & Elias R. Offen & Othusitse Basmanebothe, 2022. "Optimal Investment, Consumption and Life Insurance Problem with Stochastic Environments," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 14(4), pages 1-33, November.
  16. Wang, Ling & Chen, Kexin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Optimal expansion of business opportunity," European Journal of Operational Research, Elsevier, vol. 309(1), pages 432-445.
  17. Guan, Guohui & Liang, Zongxia & Feng, Jian, 2018. "Time-consistent proportional reinsurance and investment strategies under ambiguous environment," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 122-133.
  18. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
  19. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
  20. Guan, Guohui & Liang, Zongxia, 2019. "Robust optimal reinsurance and investment strategies for an AAI with multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 63-78.
  21. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
  22. Bin Zou & Abel Cadenillas, 2014. "Optimal Investment and Risk Control Problem for an Insurer: Expected Utility Maximization," Papers 1402.3560, arXiv.org, revised Mar 2014.
  23. Esfandi, Elaheh & Mousavi, Mir Hossein & Moshrefi, Rassam & Farhang-Moghaddam, Babak, 2020. "Insurer Optimal Asset Allocation in a Small and Closed Economy: The Case of Iran’s Social Security Organization," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(4), pages 445-461, October.
  24. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
  25. Mei-Ling Tang & Ting-Pin Wu & Ming-Chin Hung, 2022. "Optimal Pension Fund Management with Foreign Investment in a Stochastic Environment," Mathematics, MDPI, vol. 10(14), pages 1-21, July.
  26. Tang, Mei-Ling & Chen, Son-Nan & Lai, Gene C. & Wu, Ting-Pin, 2018. "Asset allocation for a DC pension fund under stochastic interest rates and inflation-protected guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 87-104.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.