IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v43y2008i3p386-393.html
   My bibliography  Save this item

Skewed bivariate models and nonparametric estimation for the CTE risk measure

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
  2. Barbi, Massimiliano & Romagnoli, Silvia, 2018. "Skewness, basis risk, and optimal futures demand," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 14-29.
  3. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
  4. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
  5. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
  6. Belles-Sampera, Jaume & Guillen, Montserrat & Santolino, Miguel, 2016. "What attitudes to risk underlie distortion risk measure choices?," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 101-109.
  7. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
  8. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2015. "What attitudes to risk underlie distortion risk measure choices?," Working Papers 2015-05, Universitat de Barcelona, UB Riskcenter.
  9. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
  10. Alexeev Vitali & Ignatieva Katja & Liyanage Thusitha, 2021. "Dependence Modelling in Insurance via Copulas with Skewed Generalised Hyperbolic Marginals," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
  11. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.
  12. Bolancé, Catalina & Vernic, Raluca, 2019. "Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 89-103.
  13. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
  14. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
  15. Belles-Sampera, Jaume & Guillén, Montserrat & Santolino, Miguel, 2014. "GlueVaR risk measures in capital allocation applications," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 132-137.
  16. Catalina Bolancé & Raluca Vernic, 2017. "“Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution”," IREA Working Papers 201718, University of Barcelona, Research Institute of Applied Economics, revised Oct 2017.
  17. Alexandra Badea & Catalina Bolancé & Raluca Vernic, 2022. "On the Bivariate Composite Gumbel–Pareto Distribution," Stats, MDPI, vol. 5(4), pages 1-22, October.
  18. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
  19. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
  20. David Pitt & Montserrat Guillén, 2010. "An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions," Working Papers XREAP2010-03, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2010.
  21. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
  22. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
  23. Pigeon, Mathieu & Henry de Frahan, Bruno & Denuit, Michel, 2014. "Evaluation of the EU Proposed Farm Income Stabilisation Tool by Skew Normal Linear Mixed Models," LIDAM Discussion Papers ISBA 2014003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  24. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“The use of flexible quantile-based measures in risk assessment”," IREA Working Papers 201323, University of Barcelona, Research Institute of Applied Economics, revised Dec 2013.
  25. Mercedes Ayuso & Montserrat Guillen & Catalina Bolancé, 2011. "Loss risk through fraud in car insurance," Working Papers XREAP2011-08, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
  26. Guillen, Montserrat & Prieto, Faustino & Sarabia, José María, 2011. "Modelling losses and locating the tail with the Pareto Positive Stable distribution," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 454-461.
  27. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
  28. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
  29. Ramon ALEMANY & Catalina BOLANCÉ & Montserrat GUILLÉN & Alemar E. PADILLA-BARRETO, 2016. "Combining Parametric And Non-Parametric Methods To Compute Value-At-Risk," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(4), pages 61-74.
  30. Jaume Belles-Sampera & Montserrat Guillén & Miguel Santolino, 2013. "“Beyond Value-at-Risk: GlueVaR Distortion Risk Measures”," IREA Working Papers 201302, University of Barcelona, Research Institute of Applied Economics, revised Feb 2013.
  31. Eling, Martin & Wirfs, Jan Hendrik, 2016. "Cyber Risk: Too Big to Insure? Risk Transfer Options for a mercurial risk class," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 59, number 59.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.