IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v40y2007i2p302-310.html
   My bibliography  Save this item

The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gu, Mengdi & Yang, Yipeng & Li, Shoude & Zhang, Jingyi, 2010. "Constant elasticity of variance model for proportional reinsurance and investment strategies," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 580-587, June.
  2. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
  3. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
  4. Xiao Xu, 2020. "The optimal investment strategy of a DC pension plan under deposit loan spread and the O-U process," Papers 2005.10661, arXiv.org.
  5. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
  6. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
  7. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
  8. Alain Bensoussan & Ka Chun Cheung & Yiqun Li & Sheung Chi Phillip Yam, 2022. "Inter‐temporal mutual‐fund management," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 825-877, July.
  9. Silas A. Ihedioha & Ben I. Oruh & Bright O. Osu, 2017. "Effect of Correlation of Brownian Motions on an Investor,s Optimal Investment and Consumption Decision under Ornstein-Uhlenbeck Model," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 3(6), pages 52-61, 06-2017.
  10. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
  11. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
  12. Stephen Matteo Miller, 2015. "Leverage effect breakdowns and flight from risky assets," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 865-871, May.
  13. Ballestra, Luca Vincenzo & Cecere, Liliana, 2016. "A numerical method to estimate the parameters of the CEV model implied by American option prices: Evidence from NYSE," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 100-106.
  14. Zhongyang Sun & Junyi Guo, 2018. "Optimal mean–variance investment and reinsurance problem for an insurer with stochastic volatility," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(1), pages 59-79, August.
  15. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
  16. Gao, Jianwei, 2009. "Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 9-18, August.
  17. Zhao, Hui & Rong, Ximin, 2012. "Portfolio selection problem with multiple risky assets under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 179-190.
  18. Chang, Hao & Chang, Kai, 2017. "Optimal consumption–investment strategy under the Vasicek model: HARA utility and Legendre transform," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 215-227.
  19. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
  20. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
  21. Kun Wu & Weixing Wu, 2016. "Optimal Controls for a Large Insurance Under a CEV Model: Based on the Legendre Transform-Dual Method," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 167-178, December.
  22. Francesco Menoncin & Elena Vigna, 2013. "Mean-variance target-based optimisation in DC plan with stochastic interest rate," Carlo Alberto Notebooks 337, Collegio Carlo Alberto.
  23. Jung, Eun Ju & Kim, Jai Heui, 2012. "Optimal investment strategies for the HARA utility under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 667-673.
  24. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi & Elena Vigna, 2010. "Constrained portfolio choices in the decumulation phase of a pension plan," Carlo Alberto Notebooks 155, Collegio Carlo Alberto.
  25. Zheng, Xiaoxiao & Zhou, Jieming & Sun, Zhongyang, 2016. "Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 77-87.
  26. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.