IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v45y2009i1p9-18.html
   My bibliography  Save this article

Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model

Author

Listed:
  • Gao, Jianwei

Abstract

This paper focuses on the constant elasticity of variance (CEV) model for studying the optimal investment strategy before and after retirement in a defined contribution pension plan where benefits are paid under the form of annuities; annuities are supposed to be guaranteed during a certain fixed period of time. Using Legendre transform, dual theory and variable change technique, we derive the explicit solutions for the power and exponential utility functions in two different periods (before and after retirement). Each solution contains a modified factor which reflects an investor's decision to hedge the volatility risk. In order to investigate the influence of the modified factor on the optimal strategy, we analyze the property of the modified factor. The results show that the dynamic behavior of the modified factor for the power utility mainly depends on the time and the investor's risk aversion coefficient, whereas it only depends on the time in the exponential case.

Suggested Citation

  • Gao, Jianwei, 2009. "Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 9-18, August.
  • Handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:9-18
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00013-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Y.L. & Lin, T.I. & Lee, C.F., 2008. "Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 60-71.
    2. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.
    3. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2003. "Pensionmetrics 2: stochastic pension plan design during the distribution phase," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 29-47, August.
    4. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    5. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    6. Devolder, Pierre & Bosch Princep, Manuela & Dominguez Fabian, Inmaculada, 2003. "Stochastic optimal control of annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 227-238, October.
    7. Albrecht, Peter & Maurer, Raimond, 2001. "Self-Annuitization, Ruin Risk in Retirement and Asset Allocation: The Annuity Benchmark," Sonderforschungsbereich 504 Publications 01-35, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    8. Xiao, Jianwu & Hong, Zhai & Qin, Chenglin, 2007. "The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 302-310, March.
    9. Blake, David & Cairns, Andrew J. G. & Dowd, Kevin, 2001. "Pensionmetrics: stochastic pension plan design and value-at-risk during the accumulation phase," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 187-215, October.
    10. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    11. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
    12. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    13. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    14. Albrecht, Peter & Maurer, Raimond, 2002. "Self-Annuitization, Consumption Shortfall in Retirement and Asset Allocation: The Annuity Benchmark," Journal of Pension Economics and Finance, Cambridge University Press, vol. 1(3), pages 269-288, November.
    15. Steven Haberman & Elena Vigna, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," ICER Working Papers - Applied Mathematics Series 09-2002, ICER - International Centre for Economic Research.
    16. Blomvall, Jorgen & Lindberg, Per Olov, 2003. "Back-testing the performance of an actively managed option portfolio at the Swedish Stock Market, 1990-1999," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1099-1112, April.
    17. Haberman, Steven & Vigna, Elena, 2002. "Optimal investment strategies and risk measures in defined contribution pension schemes," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 35-69, August.
    18. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2004. "Optimal design of the guarantee for defined contribution funds," ULB Institutional Repository 2013/7602, ULB -- Universite Libre de Bruxelles.
    21. Philip Booth & Yakoub Yakoubov, 2000. "Investment Policy for Defined-Contribution Pension Scheme Members Close to Retirement," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(2), pages 1-19.
    22. Munk, Claus & Sorensen, Carsten & Nygaard Vinther, Tina, 2004. "Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?," International Review of Economics & Finance, Elsevier, vol. 13(2), pages 141-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danping & Rong, Ximin & Zhao, Hui & Yi, Bo, 2017. "Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 6-20.
    2. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    3. Alain Bensoussan & Ka Chun Cheung & Yiqun Li & Sheung Chi Phillip Yam, 2022. "Inter‐temporal mutual‐fund management," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 825-877, July.
    4. Yang Wang & Jianwei Lin & Dandan Chen & Jizhou Zhang, 2023. "Optimal Investment–Consumption–Insurance Problem of a Family with Stochastic Income under the Exponential O-U Model," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    5. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    6. Wang, Pei & Li, Zhongfei, 2018. "Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 67-83.
    7. Silas A. Ihedioha & Ben I. Oruh & Bright O. Osu, 2017. "Effect of Correlation of Brownian Motions on an Investor,s Optimal Investment and Consumption Decision under Ornstein-Uhlenbeck Model," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 3(6), pages 52-61, 06-2017.
    8. Guan, Guohui & Liang, Zongxia, 2016. "Optimal management of DC pension plan under loss aversion and Value-at-Risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 224-237.
    9. Stephen Matteo Miller, 2015. "Leverage effect breakdowns and flight from risky assets," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 865-871, May.
    10. Michal Čermák, 2017. "Leverage Effect and Stochastic Volatility in the Agricultural Commodity Market under the CEV Model," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(5), pages 1671-1678.
    11. Zhao, Hui & Rong, Ximin, 2012. "Portfolio selection problem with multiple risky assets under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 179-190.
    12. Chang, Hao & Chang, Kai, 2017. "Optimal consumption–investment strategy under the Vasicek model: HARA utility and Legendre transform," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 215-227.
    13. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    14. Jung, Eun Ju & Kim, Jai Heui, 2012. "Optimal investment strategies for the HARA utility under the constant elasticity of variance model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 667-673.
    15. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    16. Guan, Guohui & Liang, Zongxia, 2016. "A stochastic Nash equilibrium portfolio game between two DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 237-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    2. Gao, Jianwei, 2010. "An extended CEV model and the Legendre transform-dual-asymptotic solutions for annuity contracts," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 511-530, June.
    3. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    4. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    5. Russell Gerrard & Bjarne Højgaard & Elena Vigna, 2008. "Choosing the Optimal Annuitization Time Post Retirement," Carlo Alberto Notebooks 76, Collegio Carlo Alberto.
    6. Han, Nan-Wei & Hung, Mao-Wei, 2015. "The investment management for a downside-protected equity-linked annuity under interest rate risk," Finance Research Letters, Elsevier, vol. 13(C), pages 113-124.
    7. Marina Di Giacinto & Elena Vigna, 2012. "On the sub-optimality cost of immediate annuitization in DC pension funds," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(3), pages 497-527, September.
    8. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    9. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    10. Xiao Xu, 2020. "The optimal investment strategy of a DC pension plan under deposit loan spread and the O-U process," Papers 2005.10661, arXiv.org.
    11. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    12. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    13. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    14. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    15. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    16. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    17. He, Lin & Liang, Zongxia, 2013. "Optimal investment strategy for the DC plan with the return of premiums clauses in a mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 643-649.
    18. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    19. Chavez-Bedoya, Luis & Castaneda, Ranu, 2021. "A benchmarking approach to track and compare administrative charges on flow and balance in individual account pension systems," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 7-23.
    20. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:45:y:2009:i:1:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.