IDEAS home Printed from https://ideas.repec.org/r/eee/inecon/v145y2023ics0022199623000594.html
   My bibliography  Save this item

Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Potjagailo, Galina & Wolters, Maik H., 2023. "Global financial cycles since 1880," Journal of International Money and Finance, Elsevier, vol. 131(C).
  2. Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "On the efficient synthesis of short financial time series: A Dynamic Factor Model approach," Finance Research Letters, Elsevier, vol. 53(C).
  3. Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.
  4. Jeremy Fouliard & Michael Howell & Hélène Rey & Vania Stavrakeva, 2020. "Answering the Queen: Machine Learning and Financial Crises," NBER Working Papers 28302, National Bureau of Economic Research, Inc.
  5. Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).
  6. Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
  7. Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021. "Comparing minds and machines: implications for financial stability," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
  8. Hyeongwoo Kim & Wen Shi, 2021. "Forecasting financial vulnerability in the USA: A factor model approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 439-457, April.
  9. Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
  10. du Plessis, Emile & Fritsche, Ulrich, 2022. "New forecasting methods for an old problem: Predicting 147 years of systemic financial crises," WiSo-HH Working Paper Series 67, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
  11. Simona Malovaná & Josef Bajzík & Dominika Ehrenbergerová & Jan Janků, 2023. "A prolonged period of low interest rates in Europe: Unintended consequences," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 526-572, April.
  12. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
  13. Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Seismonomics: Listening to the heartbeat of the economy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 288-309, December.
  14. Jiaming Liu & Chengzhang Li & Peng Ouyang & Jiajia Liu & Chong Wu, 2023. "Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1112-1137, August.
  15. Hurley, James & Karmakar, Sudipto & Markoska, Elena & Walczak, Eryk & Walker, Danny, 2021. "Impacts of the Covid-19 crisis: evidence from 2 million UK SMEs," Bank of England working papers 924, Bank of England.
  16. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
  17. Barbara Jarmulska, 2022. "Random forest versus logit models: Which offers better early warning of fiscal stress?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 455-490, April.
  18. Roy, Dibyendu & Zhu, Shunmin & Wang, Ruiqi & Mondal, Pradip & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models," Applied Energy, Elsevier, vol. 361(C).
  19. Moreno Badia, Marialuz & Medas, Paulo & Gupta, Pranav & Xiang, Yuan, 2022. "Debt is not free," Journal of International Money and Finance, Elsevier, vol. 127(C).
  20. Truong, Chi & Sheen, Jeffrey & Trück, Stefan & Villafuerte, James, 2022. "Early warning systems using dynamic factor models: An application to Asian economies," Journal of Financial Stability, Elsevier, vol. 58(C).
  21. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
  22. Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "Measuring financial soundness around the world: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 85(C).
  23. Suss, Joel & Treitel, Henry, 2019. "Predicting bank distress in the UK with machine learning," Bank of England working papers 831, Bank of England.
  24. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
  25. Peter Breyer & Stefan Girsch & Jakob Hanzl & Mario Hübler & Sophie Steininger & Elisabeth Wittig, 2023. "An analysis of Austrian banks during the high inflation period of the 1970s," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 45, pages 45-59.
  26. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.