My bibliography
Save this item
Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Potjagailo, Galina & Wolters, Maik H., 2023.
"Global financial cycles since 1880,"
Journal of International Money and Finance, Elsevier, vol. 131(C).
- Potjagailo, Galina & Wolters, Maik H., 2019. "Global financial cycles since 1880," Kiel Working Papers 2122, Kiel Institute for the World Economy (IfW Kiel).
- Potjagailo, Galina & Wolters, Maik H, 2020. "Global financial cycles since 1880," Bank of England working papers 867, Bank of England.
- Potjagailo, Galina & Wolters, Maik H., 2019. "Global financial cycles since 1880," IMFS Working Paper Series 132, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "On the efficient synthesis of short financial time series: A Dynamic Factor Model approach," Finance Research Letters, Elsevier, vol. 53(C).
- Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024.
"Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.
- Lloyd, Simon & Manuel, Ed & Panchev, Konstantin, 2021. "Foreign vulnerabilities, domestic risks: the global drivers of GDP-at-Risk," Bank of England working papers 940, Bank of England.
- Lloyd, S. & Manuel, E. & Panchev, K., 2021. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," Cambridge Working Papers in Economics 2156, Faculty of Economics, University of Cambridge.
- Lloyd, S. & Manuel, E. & Panchev, K., 2021. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," Janeway Institute Working Papers 2102, Faculty of Economics, University of Cambridge.
- Jeremy Fouliard & Michael Howell & Hélène Rey & Vania Stavrakeva, 2020.
"Answering the Queen: Machine Learning and Financial Crises,"
NBER Working Papers
28302, National Bureau of Economic Research, Inc.
- Jérémy Fouliard & Michael Howell & Hélène Rey, 2021. "Answering the Queen: Machine learning and financial crises," BIS Working Papers 926, Bank for International Settlements.
- Fouliard, Jeremy & Howell, Michael & Rey, Hélène & Stavrakeva, Vania, 2022. "Answering the Queen: Machine Learning and Financial Crises," CEPR Discussion Papers 15618, C.E.P.R. Discussion Papers.
- Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).
- Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
- Marcus Buckmann & Andy Haldane & Anne-Caroline Hüser, 2021.
"Comparing minds and machines: implications for financial stability,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 479-508.
- Buckmann, Marcus & Haldane, Andy & Hüser, Anne-Caroline, 2021. "Comparing minds and machines: implications for financial stability," Bank of England working papers 937, Bank of England.
- Hyeongwoo Kim & Wen Shi, 2021.
"Forecasting financial vulnerability in the USA: A factor model approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 439-457, April.
- Hyeongwoo Kim & Wen Shi, 2016. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2016-15, Department of Economics, Auburn University.
- Hyeongwoo Kim & Wen Shi, 2020. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2020-04, Department of Economics, Auburn University.
- Kim, Hyeongwoo & Shi, Wen, 2018. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," MPRA Paper 89766, University Library of Munich, Germany.
- Hyeongwoo Kim & Wen Shi, 2018. "Forecasting Financial Vulnerability in the US: A Factor Model Approach," Auburn Economics Working Paper Series auwp2018-07, Department of Economics, Auburn University.
- Ademmer, Martin & Beckmann, Joscha & Bode, Eckhardt & Boysen-Hogrefe, Jens & Funke, Manuel & Hauber, Philipp & Heidland, Tobias & Hinz, Julian & Jannsen, Nils & Kooths, Stefan & Söder, Mareike & Stame, 2021. "Big Data in der makroökonomischen Analyse," Kieler Beiträge zur Wirtschaftspolitik 32, Kiel Institute for the World Economy (IfW Kiel).
- Emile du Plessis & Ulrich Fritsche, 2025.
"New forecasting methods for an old problem: Predicting 147 years of systemic financial crises,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 3-40, January.
- du Plessis, Emile & Fritsche, Ulrich, 2022. "New forecasting methods for an old problem: Predicting 147 years of systemic financial crises," WiSo-HH Working Paper Series 67, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Simona Malovaná & Josef Bajzík & Dominika Ehrenbergerová & Jan Janků, 2023. "A prolonged period of low interest rates in Europe: Unintended consequences," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 526-572, April.
- Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
- Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Seismonomics: Listening to the heartbeat of the economy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 288-309, December.
- Jiaming Liu & Chengzhang Li & Peng Ouyang & Jiajia Liu & Chong Wu, 2023. "Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1112-1137, August.
- Hurley, James & Karmakar, Sudipto & Markoska, Elena & Walczak, Eryk & Walker, Danny, 2021. "Impacts of the Covid-19 crisis: evidence from 2 million UK SMEs," Bank of England working papers 924, Bank of England.
- Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
- Barbara Jarmulska, 2022.
"Random forest versus logit models: Which offers better early warning of fiscal stress?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 455-490, April.
- Jarmulska, Barbara, 2020. "Random forest versus logit models: which offers better early warning of fiscal stress?," Working Paper Series 2408, European Central Bank.
- Roy, Dibyendu & Zhu, Shunmin & Wang, Ruiqi & Mondal, Pradip & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models," Applied Energy, Elsevier, vol. 361(C).
- Moreno Badia, Marialuz & Medas, Paulo & Gupta, Pranav & Xiang, Yuan, 2022.
"Debt is not free,"
Journal of International Money and Finance, Elsevier, vol. 127(C).
- Ms. Marialuz Moreno Badia & Mr. Paulo A Medas & Pranav Gupta & Yuan Xiang, 2020. "Debt Is Not Free," IMF Working Papers 2020/001, International Monetary Fund.
- Truong, Chi & Sheen, Jeffrey & Trück, Stefan & Villafuerte, James, 2022. "Early warning systems using dynamic factor models: An application to Asian economies," Journal of Financial Stability, Elsevier, vol. 58(C).
- Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
- Bitetto, Alessandro & Cerchiello, Paola & Mertzanis, Charilaos, 2023. "Measuring financial soundness around the world: A machine learning approach," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
- Suss, Joel & Treitel, Henry, 2019. "Predicting bank distress in the UK with machine learning," Bank of England working papers 831, Bank of England.
- Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
- Peter Breyer & Stefan Girsch & Jakob Hanzl & Mario Hübler & Sophie Steininger & Elisabeth Wittig, 2023. "An analysis of Austrian banks during the high inflation period of the 1970s," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 45, pages 45-59.
- Augusto Cerqua & Marco Letta & Gabriele Pinto, 2024. "On the (Mis)Use of Machine Learning with Panel Data," Papers 2411.09218, arXiv.org.
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.