IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v82y2015icp436-445.html
   My bibliography  Save this item

Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
  2. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
  3. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
  4. Yang, Shipin & Chellali, Ryad & Lu, Xiaohua & Li, Lijuan & Bo, Cuimei, 2016. "Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm," Energy, Elsevier, vol. 109(C), pages 569-577.
  5. Jiawen Bai & Tao Ding & Zhe Wang & Jianhua Chen, 2019. "Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants," Energies, MDPI, vol. 12(20), pages 1-17, October.
  6. Marula Tsagkari & Jordi Roca Jusmet, 2020. "Renewable Energy Projects on Isolated Islands in Europe: A Policy Review," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 21-30.
  7. Guzzi, Francesco & Neves, Diana & Silva, Carlos A., 2017. "Integration of smart grid mechanisms on microgrids energy modelling," Energy, Elsevier, vol. 129(C), pages 321-330.
  8. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  9. Zhe Luo & Seung-Ho Hong & Jong-Beom Kim, 2016. "A Price-Based Demand Response Scheme for Discrete Manufacturing in Smart Grids," Energies, MDPI, vol. 9(8), pages 1-18, August.
  10. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
  11. Linas Gelažanskas & Kelum A. A. Gamage, 2015. "Forecasting Hot Water Consumption in Residential Houses," Energies, MDPI, vol. 8(11), pages 1-16, November.
  12. Lorenzi, Guido & Silva, Carlos Augusto Santos, 2016. "Comparing demand response and battery storage to optimize self-consumption in PV systems," Applied Energy, Elsevier, vol. 180(C), pages 524-535.
  13. Chu, Wenfeng & Zhang, Yu & Wang, Donglin & He, Wei & Zhang, Sheng & Hu, Zhongting & Zhou, Jinzhi, 2023. "Capacity determination of renewable energy systems, electricity storage, and heat storage in grid-interactive buildings," Energy, Elsevier, vol. 285(C).
  14. Daniel J. Sambor & Michelle Wilber & Erin Whitney & Mark Z. Jacobson, 2020. "Development of a Tool for Optimizing Solar and Battery Storage for Container Farming in a Remote Arctic Microgrid," Energies, MDPI, vol. 13(19), pages 1-18, October.
  15. Shakya, Bhupendra & Bruce, Anna & MacGill, Iain, 2019. "Survey based characterisation of energy services for improved design and operation of standalone microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 493-503.
  16. Fei Wang & Lidong Zhou & Hui Ren & Xiaoli Liu, 2017. "Search Improvement Process-Chaotic Optimization-Particle Swarm Optimization-Elite Retention Strategy and Improved Combined Cooling-Heating-Power Strategy Based Two-Time Scale Multi-Objective Optimizat," Energies, MDPI, vol. 10(12), pages 1-23, November.
  17. Alessandro Corsini & Luca Cedola & Francesca Lucchetta & Eileen Tortora, 2019. "Gen-Set Control in Stand-Alone/RES Integrated Power Systems," Energies, MDPI, vol. 12(17), pages 1-17, August.
  18. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
  19. Sun, Wei & Xu, Yanfeng, 2016. "Financial security evaluation of the electric power industry in China based on a back propagation neural network optimized by genetic algorithm," Energy, Elsevier, vol. 101(C), pages 366-379.
  20. Neves, Diana & Pina, André & Silva, Carlos A., 2018. "Assessment of the potential use of demand response in DHW systems on isolated microgrids," Renewable Energy, Elsevier, vol. 115(C), pages 989-998.
  21. Ricardo Faia & Pedro Faria & Zita Vale & João Spinola, 2019. "Demand Response Optimization Using Particle Swarm Algorithm Considering Optimum Battery Energy Storage Schedule in a Residential House," Energies, MDPI, vol. 12(9), pages 1-18, April.
  22. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
  23. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
  24. Neves, Diana & Brito, Miguel C. & Silva, Carlos A., 2016. "Impact of solar and wind forecast uncertainties on demand response of isolated microgrids," Renewable Energy, Elsevier, vol. 87(P2), pages 1003-1015.
  25. Chu, Wenfeng & Zhang, Yu & He, Wei & Zhang, Sheng & Hu, Zhongting & Ru, Bingqian & Ying, Shangxuan, 2023. "Research on flexible allocation strategy of power grid interactive buildings based on multiple optimization objectives," Energy, Elsevier, vol. 278(PB).
  26. Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
  27. Fera, M. & Macchiaroli, R. & Iannone, R. & Miranda, S. & Riemma, S., 2016. "Economic evaluation model for the energy Demand Response," Energy, Elsevier, vol. 112(C), pages 457-468.
  28. Venkat Durvasulu & Timothy M. Hansen, 2018. "Benefits of a Demand Response Exchange Participating in Existing Bulk-Power Markets," Energies, MDPI, vol. 11(12), pages 1-21, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.