IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v37y2012i1p322-335.html
   My bibliography  Save this item

Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
  2. Sane Lei Lei Wynn & Watcharakorn Pinthurat & Boonruang Marungsri, 2022. "Multi-Objective Optimization for Peak Shaving with Demand Response under Renewable Generation Uncertainty," Energies, MDPI, vol. 15(23), pages 1-19, November.
  3. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  4. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
  5. Mohammad Ali Taghikhani & Behnam Zangeneh, 2022. "Optimal energy scheduling of micro-grids considering the uncertainty of solar and wind renewable resources," Journal of Scheduling, Springer, vol. 25(5), pages 567-576, October.
  6. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
  7. Özyön, Serdar & Temurtaş, Hasan & Durmuş, Burhanettin & Kuvat, Gültekin, 2012. "Charged system search algorithm for emission constrained economic power dispatch problem," Energy, Elsevier, vol. 46(1), pages 420-430.
  8. Fitiwi, Desta Z. & de Cuadra, F. & Olmos, L. & Rivier, M., 2015. "A new approach of clustering operational states for power network expansion planning problems dealing with RES (renewable energy source) generation operational variability and uncertainty," Energy, Elsevier, vol. 90(P2), pages 1360-1376.
  9. Pawan Singh & Baseem Khan, 2017. "Smart Microgrid Energy Management Using a Novel Artificial Shark Optimization," Complexity, Hindawi, vol. 2017, pages 1-22, October.
  10. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
  11. Falsafi, Hananeh & Zakariazadeh, Alireza & Jadid, Shahram, 2014. "The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming," Energy, Elsevier, vol. 64(C), pages 853-867.
  12. Wang, Xianxun & Mei, Yadong & Kong, Yanjun & Lin, Yuru & Wang, Hao, 2017. "Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system," Energy, Elsevier, vol. 134(C), pages 813-839.
  13. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
  14. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
  15. Zaman, Forhad & Elsayed, Saber M. & Ray, Tapabrata & Sarker, Ruhul A., 2016. "Evolutionary algorithms for power generation planning with uncertain renewable energy," Energy, Elsevier, vol. 112(C), pages 408-419.
  16. Wang, K.Y. & Luo, X.J. & Wu, L. & Liu, X.C., 2013. "Optimal coordination of wind-hydro-thermal based on water complementing wind," Renewable Energy, Elsevier, vol. 60(C), pages 169-178.
  17. Chen, Fang & Zhou, Jianzhong & Wang, Chao & Li, Chunlong & Lu, Peng, 2017. "A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching," Energy, Elsevier, vol. 121(C), pages 276-291.
  18. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
  19. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
  20. Naz, Muhammad Naveed & Mushtaq, Muhammad Irfan & Naeem, Muhammad & Iqbal, Muhammad & Altaf, Muhammad Waseem & Haneef, Muhammad, 2017. "Multicriteria decision making for resource management in renewable energy assisted microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 323-341.
  21. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
  22. Khorramdel, Benyamin & Raoofat, Mahdi, 2012. "Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms," Energy, Elsevier, vol. 45(1), pages 994-1006.
  23. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
  24. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
  25. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
  26. Chen, Min-Rong & Zeng, Guo-Qiang & Lu, Kang-Di, 2019. "Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources," Renewable Energy, Elsevier, vol. 143(C), pages 277-294.
  27. Ghasemi, Mojtaba & Ghavidel, Sahand & Akbari, Ebrahim & Vahed, Ali Azizi, 2014. "Solving non-linear, non-smooth and non-convex optimal power flow problems using chaotic invasive weed optimization algorithms based on chaos," Energy, Elsevier, vol. 73(C), pages 340-353.
  28. Zare, Mohsen & Niknam, Taher, 2013. "A new multi-objective for environmental and economic management of Volt/Var Control considering renewable energy resources," Energy, Elsevier, vol. 55(C), pages 236-252.
  29. Zare, Mohsen & Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Amiri, Babak, 2014. "Multi-objective probabilistic reactive power and voltage control with wind site correlations," Energy, Elsevier, vol. 66(C), pages 810-822.
  30. Xiuyun Wang & Jian Wang & Biyuan Tian & Yang Cui & Yu Zhao, 2018. "Economic Dispatch of the Low-Carbon Green Certificate with Wind Farms Based on Fuzzy Chance Constraints," Energies, MDPI, vol. 11(4), pages 1-19, April.
  31. Dubey, Hari Mohan & Pandit, Manjaree & Panigrahi, B.K., 2015. "Hybrid flower pollination algorithm with time-varying fuzzy selection mechanism for wind integrated multi-objective dynamic economic dispatch," Renewable Energy, Elsevier, vol. 83(C), pages 188-202.
  32. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
  33. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
  34. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
  35. Azad-Farsani, Ehsan & Agah, S.M.M. & Askarian-Abyaneh, Hossein & Abedi, Mehrdad & Hosseinian, S.H., 2016. "Stochastic LMP (Locational marginal price) calculation method in distribution systems to minimize loss and emission based on Shapley value and two-point estimate method," Energy, Elsevier, vol. 107(C), pages 396-408.
  36. Niknam, Taher & Kavousi Fard, Abdollah & Baziar, Aliasghar, 2012. "Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants," Energy, Elsevier, vol. 42(1), pages 563-573.
  37. Narimani, Mohammad Rasoul & Azizipanah-Abarghooee, Rasoul & Zoghdar-Moghadam-Shahrekohne, Behrouz & Gholami, Kayvan, 2013. "A novel approach to multi-objective optimal power flow by a new hybrid optimization algorithm considering generator constraints and multi-fuel type," Energy, Elsevier, vol. 49(C), pages 119-136.
  38. Raheela Jamal & Baohui Men & Noor Habib Khan & Muhammad Asif Zahoor Raja, 2019. "Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind," Energies, MDPI, vol. 12(13), pages 1-23, July.
  39. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.